
Polymorphism

Polymorphic Functions
doTwice :: (a -> a) -> a -> a

doTwice f x = f (f x)

Operate on di!erent kinds values

>>> double x = 2 * x

>>> yum x = x ++ " yum! yum!"

>>> doTwice double 10

40

>>> doTwice yum "cookie"

"cookie yum! yum!"

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

1 of 24 10/27/20, 9:28 AM

nickname
type synonym

data
new distinct type

QUIZ
What is the value of quiz ?

greaterThan :: Int -> Int -> Bool

greaterThan x y = x > y

quiz = doTwice (greaterThan 10) 0

A. True

B. False

C. Type Error

D. Run-time Exception

E. 101

With great power, comes great
responsibility!

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

2 of 24 10/27/20, 9:28 AM

I

>>> doTwice (greaterThan 10) 0

36:9: Couldn't match type ‘Bool’ with ‘Int’

Expected type: Int -> Int

Actual type: Int -> Bool

In the first argument of ‘doTwice’, namely ‘greaterThan 1

0’

In the expression: doTwice (greaterThan 10) 0

The input and output types are di!erent!

Cannot feed the output of (greaterThan 10 0) into greaterThan 10 !

Polymorphic Types
But the type of doTwice would have spared us this grief.

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

3 of 24 10/27/20, 9:28 AM

>>> :t doTwice

doTwice :: (a -> a) -> a -> a

The signature has a type parameter t

re-use doTwice to increment Int or concat String or …

The first argument f must take input t and return output t (i.e. t ->

t)

The second argument x must be of type t

Then f x will also have type t … and we can call f (f x) .

But f unction is incompatible with doTwice

if its input and output types di!er

QUIZ

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

4 of 24 10/27/20, 9:28 AM

Lets make sure you’re following!

What is the type of quiz ?

quiz x f = f x

A. a -> a

B. (a -> a) -> a

C. a -> b -> a -> b

D. a -> (a -> b) -> b

E. a -> b -> a

QUIZ
Lets make sure you’re following!

What is the value of quiz ?

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

5 of 24 10/27/20, 9:28 AM

1J quiz Ix f f y

t
th I
The Tout

a a b b

apply x f = f x

greaterThan :: Int -> Int -> Bool

greaterThan x y = x > y

quiz = apply 100 (greaterThan 10)

A. Type Error

B. Run-time Exception

C. True

D. False

E. 110

Polymorphic Data Structures

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

6 of 24 10/27/20, 9:28 AM

apply a Ca s b b

tht Tho
Bool

Today, lets see polymorphic data types

which contain many kinds of values.

Recap: Data Types
Recall that Haskell allows you to create brand new data types (03-haskell-

types.html)

data Shape

= MkRect Double Double

| MkPoly [(Double, Double)]

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

7 of 24 10/27/20, 9:28 AM

QUIZ
What is the type of MkRect ?

data Shape

= MkRect Double Double

| MkPoly [(Double, Double)]

a. Shape

b. Double

c. Double -> Double -> Shape

d. (Double, Double) -> Shape

e. [(Double, Double)] -> Shape

Tagged Boxes

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

8 of 24 10/27/20, 9:28 AM

Values of this type are either two doubles tagged with Rectangle

>>> :type (Rectangle 4.5 1.2)

(Rectangle 4.5 1.2) :: Shape

or a list of pairs of Double values tagged with Polygon

ghci> :type (Polygon [(1, 1), (2, 2), (3, 3)])

(Polygon [(1, 1), (2, 2), (3, 3)]) :: Shape

Data values inside special Tagged Boxes

Datatypes are Boxed-and-Tagged Values

Recursive Data Types

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

9 of 24 10/27/20, 9:28 AM

We can define datatypes recursively too

data IntList

= INil -- ^ empty list

| ICons Int IntList -- ^ list with "hd" Int and "tl" IntL

ist

deriving (Show)

(Ignore the bit about deriving for now.)

QUIZ
data IntList

= INil -- ^ empty list

| ICons Int IntList -- ^ list with "hd" Int and "tl" IntL

ist

deriving (Show)

What is the type of ICons ?

A. Int -> IntList -> List

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

10 of 24 10/27/20, 9:28 AM

Icons 1 Icons 2 16ns 3 INic

T n

B. IntList

C. Int -> IntList -> IntList

D. Int -> List -> IntList

E. IntList -> IntList

Constructing IntList
Can only build IntList via constructors.

>>> :type INil

INil:: IntList

>>> :type ICons

ICons :: Int -> IntList -> IntList

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

11 of 24 10/27/20, 9:28 AM

EXERCISE
Write down a representation of type IntList of the list of three numbers

1 , 2 and 3 .

list_1_2_3 :: IntList

list_1_2_3 = ???

Hint Recursion means boxes within boxes

Recursively Nested Boxes

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

12 of 24 10/27/20, 9:28 AM

Icons 1 icons 2 icons3 1Nil

data Inthee
tree Int tree 1Leaf
tree I 1Node Int IntTree

Inttree

I

1 l 1node I
ode 2 HeatHeat

Kafkafl
Knode 3 Keaf deaf

Trees: Multiple Recursive Occurrences
We can represent Int trees like

data IntTree

= ILeaf Int -- ^ single "leaf" w/ an Int

| INode IntTree IntTree -- ^ internal "node" w/ 2 sub-tre

es

deriving (Show)

A leaf is a box containing an Int tagged ILeaf e.g.

>>> it1 = ILeaf 1

>>> it2 = ILeaf 2

A node is a box containing two sub-trees tagged INode e.g.

>>> itt = INode (ILeaf 1) (ILeaf 2)

>>> itt' = INode itt itt

>>> INode itt' itt'

INode (INode (ILeaf 1) (ILeaf 2)) (INode (ILeaf 1) (ILeaf 2))

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

13 of 24 10/27/20, 9:28 AM

D

Multiple Branching Factors
e.g. 2-3 trees (http://en.wikipedia.org/wiki/2-3_tree)

data Int23T

= ILeaf0

| INode2 Int Int23T Int23T

| INode3 Int Int23T Int23T Int23T

deriving (Show)

An example value of type Int23T would be

i23t :: Int23T

i23t = INode3 0 t t t

where t = INode2 1 ILeaf0 ILeaf0

which looks like

Integer 2-3 Tree

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

14 of 24 10/27/20, 9:28 AM

Parameterized Types
We can define CharList or DoubleList - versions of IntList for Char

and Double as

data CharList

= CNil

| CCons Char CharList

deriving (Show)

data DoubleList

= DNil

| DCons Char DoubleList

deriving (Show)

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

15 of 24 10/27/20, 9:28 AM

me a

M

To a

Deaf

Don’t Repeat Yourself!
Don’t repeat definitions - Instead reuse the list structure across all types!

Find abstract data patterns by

identifying the di!erent parts and

refactor those into parameters

A Refactored List
Here are the three types: What is common? What is di!erent?

data IList = INil | ICons Int IList

data CList = CNil | CCons Char CList

data DList = DNil | DCons Double DList

Common: Nil / Cons structure

Di!erent: type of each “head” element

Refactored using Type Parameter

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

16 of 24 10/27/20, 9:28 AM

data List a = Nil | Cons a (List a)

Recover original types as instances of List
type IntList = List Int

type CharList = List Char

type DoubleList = List Double

Polymorphic Data has Polymorphic
Constructors
Look at the types of the constructors

>>> :type Nil

Nil :: List a

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

17 of 24 10/27/20, 9:28 AM

That is, the Empty tag is a value of any kind of list, and

>>> :type Cons

Cons :: a -> List a -> List a

Cons takes an a and a List a and returns a List a .

cList :: List Char -- list where 'a' = 'Char'

cList = Cons 'a' (Cons 'b' (Cons 'c' Nil))

iList :: List Int -- list where 'a' = 'Int'

iList = Cons 1 (Cons 2 (Cons 3 Nil))

dList :: List Double -- list where 'a' = 'Double'

dList = Cons 1.1 (Cons 2.2 (Cons 3.3 Nil))

Polymorphic Function over Polymorphic

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

18 of 24 10/27/20, 9:28 AM

Data
Lets write the list length function

len :: List a -> Int

len Nil = 0

len (Cons x xs) = 1 + len xs

len doesn’t care about the actual values in the list - only “counts” the

number of Cons constructors

Hence len :: List a -> Int

we can call len on any kind of list.

>>> len [1.1, 2.2, 3.3, 4.4] -- a := Double

4

>>> len "mmm donuts!" -- a := Char

11

>>> len [[1], [1,2], [1,2,3]] -- a := ???

3

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

19 of 24 10/27/20, 9:28 AM

Built-in Lists?
This is exactly how Haskell’s “built-in” lists are defined:

data [a] = [] | (:) a [a]

data List a = Nil | Cons a (List a)

Nil is called []

Cons is called :

Many list manipulating functions e.g. in [Data.List][1] are polymorphic - Can

be reused across all kinds of lists.

(++) :: [a] -> [a] -> [a]

head :: [a] -> a

tail :: [a] -> [a]

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

20 of 24 10/27/20, 9:28 AM

Generalizing Other Data Types
Polymorphic trees

data Tree a

= Leaf a

| Node (Tree a) (Tree a)

deriving (Show)

Polymorphic 2-3 trees

data Tree23 a

= Leaf0

| Node2 (Tree23 a) (Tree23 a)

| Node3 (Tree23 a) (Tree23 a) (Tree23 a)

deriving (Show)

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

21 of 24 10/27/20, 9:28 AM

Kinds
List a corresponds to lists of values of type a .

If a is the type parameter, then what is List ?

A type-constructor that - takes as input a type a - returns as output the type

List a

But wait, if List is a type-constructor then what is its “type”?

A kind is the “type” of a type.

>>> :kind Int

Int :: *

>>> :kind Char

Char :: *

>>> :kind Bool

Bool :: *

Thus, List is a function from any “type” to any other “type”, and so

>>> :kind List

List :: * -> *

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

22 of 24 10/27/20, 9:28 AM

QUIZ
What is the kind of -> ? That, is what does GHCi say if we type

>>> :kind (->)

A. *

B. * -> *

C. * -> * -> *

We will not dwell too much on this now.

As you might imagine, they allow for all sorts of abstractions over data.

If interested, see this for more information about kinds

(http://en.wikipedia.org/wiki/Kind_(type_theory)).

cse230 https://ucsd-cse230.github.io/fa20/lectures/06-poly-data.html

23 of 24 10/27/20, 9:28 AM

Bottling Computation Patterns

Polymorphism and HOFs are the Secret
Sauce
Refactor arbitrary repeated code patterns …

… into precisely specified and reusable functions

EXERCISE: Iteration
Write a function that squares a list of Int

squares :: [Int] -> [Int]

squares ns = ???

When you are done you should see

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

1 of 28 10/27/20, 9:28 AM

>>> squares [1,2,3,4,5]

[1,4,9,16,25]

Pattern: Iteration
Next, lets write a function that converts a String to uppercase.

>>> shout "hello"

"HELLO"

Recall that in Haskell, a String is just a [Char] .

shout :: [Char] -> [Char]

shout = ???

Hoogle (http://haskell.org/hoogle) to see how to transform an individual

Char

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

2 of 28 10/27/20, 9:28 AM

-- rename 'squares' to 'foo'

foo [] = []

foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] = []

foo (x:xs) = (toUpper x) : foo xs

Step 2 Identify what is di!erent

In squares we transform x to x * x

In shout we transform x to Data.Char.toUpper x

Step 3 Make di!erences a parameter

Make transform a parameter f

foo f [] = []

foo f (x:xs) = (f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map)

map f [] = []

map f (x:xs) = (f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

4 of 28 10/27/20, 9:28 AM

QUIZ
What is the type of map ?

map :: ???

map f [] = []

map f (x:xs) = (f x) : map f xs

A. (Int -> Int) -> [Int] -> [Int]

B. (a -> a) -> [a] -> [a]

C. [a] -> [b]

D. (a -> b) -> [a] -> [b]

E. (a -> b) -> [a] -> [a]

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

5 of 28 10/27/20, 9:28 AM

aka totter

doTwice fx f n

a

Ac Az Az AD

In.tn iss.tbD

The type precisely describes map
>>> :type map

map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

a transformer of type a -> b

a list of values [a]

and it returns as output

a list of values [b]

that can only come by applying f to each element of the input list.

Reusing the Pattern
Lets reuse the pattern by instantiating the transformer

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

6 of 28 10/27/20, 9:28 AM

EXERCISE
Suppose I have the following type

type Score = (Int, Int) -- pair of scores for Hw0, Hw1

Use map to write a function

total :: [Score] -> [Int]

total xs = map (???) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]

[30, 20, 43, 30]

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

8 of 28 10/27/20, 9:28 AM

The Case of the Missing Parameter
Note that we can write shout like this

shout :: [Char] -> [Char]

shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter
In Haskell, the following all mean the same thing

Suppose we define a function

add :: Int -> Int -> Int

add x y = x + y

Now the following all mean the same thing

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

9 of 28 10/27/20, 9:28 AM

plus x y = add x y

plus x = add x

plus = add

Why? equational reasoning! In general

foo x = e x

-- is equivalent to

foo = e

as long as x doesn’t appear in e .

Thus, to save some typing, we omit the extra parameter.

Pattern: Reduction
Computation patterns are everywhere lets revisit our old sumList

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

10 of 28 10/27/20, 9:28 AM

X X x x

