cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Bottling Computation Patterns

Polymorphism and HOFs are the Secret
Sauce

Refactor arbitrary repeated code patterns ...

... into precisely specified and reusable functions

EXERCISE: Iteration

Write a function that squares a list of Int

squares ::/[Int] -> [Int]
squares ns = 7?7

When you are done you should see

1 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

>>> squares [1,2,3,4,5]
[1’4,9,16’25]

Pattern: Iteration

Next, lets write a function that convertsa String to uppercase.

>>> shout "hello"
"HELLO"

Recall that in Haskell, a String isjusta [Char].

shout :: [Char] -> [Char]
shout = 72?

Hoogle (http://haskell.org/hoogle) to see how to transform an individual
Char

2 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Iteration

Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA
(http://www.livescience.com/health/070412_rhesus_ monkeys.html)

Super common computation pattern!

Abstract Iteration “Pattern” into Function

Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental differences

30f28 10/27/20,9:28 AM

cse230

4 of 28

https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

-- rename 'squares' to 'foo'

foo [] =[]

foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] =[]

foo (x:xs) = (toUpper x) : foo xs

Step 2 Identify what is different

e In squares we transform x to x * X

e In shout we transform x to Data.Char.toUpper x
Step 3 Make differences a parameter

e Make transform a parameter f

foo f []
foo f (x:xs)

[]
(f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map)

map f []
map f (x:xs)

[]
(f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

QuUIZ o lfer

_r tha.

What is the type of map ? O(UTW"C@ .27(-.-,12((7‘)
A

map :: 227 (_’/

map f [] =[]

map f (x:xs) = (f x) : map f xs

A. (Int -> Int) -> [Int] -> [Int]
® B.(a ->a) -> [a] ->([a]
C. [a] -> [b] \L J/
) -> b) -> ->[b
o D.(a ->b) -> [a] ->([b] [bn bL 5) ‘J

E. (a -> b) -> [a] -> [a]

5of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

The type precisely describes map

>>> :type map
map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

e atransformerof type a -> b

e alist of values [a]
and it returns as output
e alist of values [b]

that can only come by applying f to each element of the input list.

Reusing the Pattern

Lets reuse the pattern by instantiating the transformer

6 of 28 10/27/20,9:28 AM

cse230

7 of 28

shout

-- OLD with recursion
shout :: [Char] -> [Char]
shout [] =[]

shout (x:xs) = Char.toUpper x :

-- NEW with map
shout :: [Char] -> [Char]
shout xs = map (22??) xs

squares

-- OLD with recursion
squares :: [Int] -> [Int]
squares [] =[]

(x * x)

squares (x:xs)

-- NEW with map
squares :: [Int] -> [Int]

squares xs = map (???) xs

https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

. squares Xs

shout xs

10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

EXERCISE

Suppose I have the following type
type Score = (Int, Int) -- pair of scores for Hw@, Hwl
Use map to write a function

total :: [Score] -> [Int]
total xs = map (?2??) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]
[30, 20, 43, 30]

8 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

The Case of the Missing Parameter

Note that we can write shout like this

shout :: [Char] -> [Char]
shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter

In Haskell, the following all mean the same thing

Suppose we define a function

add :: Int -> Int -> Int
add x y = x +y

Now the following all mean the same thing

9 of 28

10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

plus x y = add x vy
plus x = add x
plus = add
Why? equational reasoning! In general /\
foo x = e x ol
-- 1s equivalent to teee o
— 0
[131 '
foo =-e _L ;] .A/
JFer reduce

aslong as x doesn’t appear in e.

we omit the extra parameter. ﬂ‘f'// €ing

Thus, to save some typing

Pattern: Reduction

Computation patterns are everywhere lets revisit our old sumList

10 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

sumList :: [Int] -> Int
sumList [] =0

sumList (x:xs) = x + sumList xs
Next, a function that concatenates the Stringsin alist

catList :: [String] -> String
catList [] = ""
catList (x:xs) = x ++ (catList xs)

Lets spot the pattern!

Step 1 Rename

foo [] =0
foo (x:xs) = x + foo xs
.Foo [] - mnmn
foo (x:xs) = x ++ foo xs

11 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Step 2 Identify what is different
1. 27?7
2,927
Step 3 Make differences a parameter

foo p1 p2 []
foo p1 P2 (x:xs)

2272

222

EXERCISE: Reduction/ Folding

This pattern is commonly called reducing or folding

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

Can you figure out how sumList and catList are justinstancesof foldr ?

Sumlist = foldr (#) 0
cotlist = A7 (#) ™

12 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

sumList :: [Int] -> Int
sumList xs = foldr (?op) (?base) xs

catList :: [String] -> String
catList xs = foldr (?op) (?base) xs

Executing foldr

To develop some intuition about foldr lets “run” it a few times by hand.
p y

13 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

foldr op b (al:a2:a3:a4:[])
==>

al ‘op” (foldr op b (a2:a3:a4:[]))
==>

al ‘op” (a2 ‘op” (foldr op b (a3:a4:[])))
==>

al ‘op” (a2 ‘op” (a3 ‘op (foldr op b (a4:[]))))
==>

al ‘op” (a2 ‘op” (a3 ‘op (a4 ‘op foldr op b [])))
==>

al ‘op” (a2 ‘op (a3 ‘op (a4 ‘op b)))
Look how it mirrors the structure of lists!

e (:) isreplaced by op
e [] isreplaced by base

So

foldr (+) 0 (x1:x2:x3:x4:[])
==> x1 + (X2 + (x3 + (x4 + 0))

fold?
/((o Aok)o K)oy) [X, ?ch ?Gcseé“rz ;fj)))
o\l / / bbub

fod] o b ['x,x;X_;]\ (X of X, “op (’13 op’ (1'1 op 6)))
'(((b o X)) o x9° x,))
&

"(zz_t("‘ (%, °A)
{,f—

0 -+

14 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Typing foldr

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

foldr takes as input

e areducer functionoftype a -> b -> b
e a base value of type b

e alist of values to reduce [a]
and returns as output

e areducedvalue b

QUIZ

Recall the function to compute the len of a list

15 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

len :: [a] -> Int
len [] =0
len (x:xs)

1 + len xs

Which of these is a valid implementation of Lea- .Qe YU

X A. len = foldr (\n ->n + 1) 0
B. len = foldr (\nm ->n +m) 0
C. len = foldr (_ n ->n + 1) 0
D. len = foldr (\x xs -> 1 + len xs) 0

E. All of the above

2, . X [a [X, L]

The Missing Parameter Revisited

We wrote foldr as

16 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

but can also write this

foldr :: (a ->b ->b) ->b ->[a] -> b

foldr op base = go
where
go [] = base
go (x:xs) = op x (go xs)

Can someone explain where the xs went missing ?

Trees

Recall the Tree a type from last time

17 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

data Tree a / ‘NO é
= Leaf ée,[.[— ﬂ‘skf'
| Node'a (Tree a) (Tree a) //\ \
0
For example here’s a tree > [~

tree3 :: Tree Int

R

. 3 <
tree2 :: Tree Int F"‘{’ Z 3b
tree2 = Node 2 Leaf Leaf / é g[’\ lo / \L)

_Woeaf' oo \ Nl esf,

(d / /[| 4 2

tree3 Node 3 Leaf Leaf

/7 NN\ \
; /0

treel23 :: Tree Int

treel23 = Node 1 tree2 Lwé Leﬂ’{/

Some Functions on Trees

Lets write a function to compute the height of a tree

18 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

height :: Tree a -> Int
height Leaf =0
height (Node x 1 r) = 1 + max (height 1) (height 1)

Here’s another to sum the leaves of a tree:

sumTree :: Tree Int -> Int
sumTree Leaf = 2?22
sumTree (Node x 1 r) = 222

Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]
toList Leaf = 222
toList (Node x 1 r) = 222

Lets give it a whirl

>>> height treel23
2

>>> sumTree treel23
6

>>> tolList tree123
[1,2,3]

19 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Pattern: Tree Fold

Can you spot the pattern? Those three functions are almost the same!

Step 1: Rename to maximize similarity

-- height
foo Leaf
foo (Node x 1 r)

0
1 + max (foo 1) (foo 1)

-- sumTree
foo Leaf
foo (Node x 1 r)

0
foo 1 + foo r

-- tolList
foo Leaf =[]

foo (Node x 1 r) = x : foo 1l ++ foo r

Step 2: Identify the differences

1922
2. 227

Step 3 Make differences a parameter

foo p1l p2 Leaf ?77?

foo p1 p2 (Node x L r) = 222

20 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Pattern: Folding on Trees

b
op X (tFold op b 1) (tFold op b r)

tFold op b Leaf
tFold op b (Node x 1 r)

Lets try to work out the type of tFold!

tFold :: t op -> t b -> Tree a -> t_out

21 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

QUIZ

Supposethat t :: Tree Int.

What does tFold (\x y z -> y + z) 1 t return?
a. 0

b. the largest element in the tree t

c. the height of the tree t

d. the number-of-leaves of the tree t

e. type error

EXERCISE

Write a function to compute the largest element in a tree or 0 if tree is

empty or all negative.

22 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

treeMax :: Tree Int -> Int
treeMax t = tFold f b t
where
f = 777
b = 777

Map over Trees

We can also write a tmap equivalent of map for Trees

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) Leaf (f x)
treeMap f (Node 1 r) = Node (treeMap f 1) (treeMap f r)

which gives

>>> treeMap (\n -> n * n) treel123 -- square all elements
of tree
Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

23 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

EXERCISE

Recursion is HARD TO READ do we really have to use it ?

Lets rewrite treeMap using tFold !

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f t = tFold op base t
where
op = 727
base = 7?7

When you are done, we should get

>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hip
po" Leaf Leaf)

>>> treeMap reverse animals

Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)

24 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Examples: foldDir

data Dir a
= Fil a -- 2 A single file named “a’
| Sub a [Dir a] -- 2~ A sub-directory name ‘a’ with cont

ents ‘[Dir a]’

data DirElem a

= SubDir a -- 2 A single Sub-Directory named ‘a’
| File a -- 2 A single File named ‘a’
foldDir :: ([a] -> r -> DirElema ->r) ->r ->Dir a ->r
foldDir f r@ dir = go [] r0O dir
where

go stk r (Fil a)
go stk r (Sub a ds)

f stk r (File a)
L.foldl' (go stk') r' ds

where
r' = f stk r (SubDir a)
stk' = a:stk

foldDir takes as input
e an accumulator f of type [a] -> r -> DirElem a -> r

o takes as input the path [a] , the current result r, the next
DirElem [a]

o and returns as output the new result r

25 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

e an initial value of the result ro® and
e directory to fold over dir

And returns the result of running the accumulator over the whole dir.

Examples: Spotting Patterns In The “Real”
World

These patterns in “toy” functions appear regularly in “real” code

1. Start with beginner’s version riddled with explicit recursion (swizzle-

vo.html).

2. Spot the patterns and eliminate recursion using HOFs (swizzle-
vi.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without

duplication (swizzle-v2.html).
Try it yourself

e Rewrite the code that swizzles Char to usethe Map k v typein

Data.Map

26 of 28 10/27/20,9:28 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

Whidh is more readable? HOFs or
Recursion

At first, recursive versions of shout and squares are easier to follow
o fold takes abit of getting used to!
With practice, the higher-order versions become easier
¢ only have to understand specific operations
e recursion is lower-level & have to see “loop” structure
e worse, potential for making silly off-by-one errers

Indeed, HOFs were the basis of map/reduce and the big-data revolution
(http://en.wikipedia.org/wiki/MapReduce)

e Can parallelize and distribute computation patterns just once
(https://www.usenix.org/event/osdio4/tech/full_papers
/dean/dean.pdf)

¢ Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or

thousands of instances!

27 of 28 10/27/20, 9:28 AM

cse230 https¥7ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

(https://ucsd-cse230.github.io/fa20/feed.xml)
(https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469)
(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin
Ronacher (http://lucumr.pocoo.org), suggest improvements here
(https://github.com/ucsd-progsys/liquidhaskell-blog/).

28 of 28

10/27/20,9:28 AM

cse23 https://ucsd-cse230.github.jo/fa20/lectures/04-haskell-io.html

O1f - frees due Fidoy (/4
Haskell Crash Course Part II1

Writing Applications
Lets write the classic “Hello world!” program.

For example, in Python you may write:

def main():
print "hello, world!"

main()
and then you can run it:

$ python hello.py
hello world!

1of 17 10/29/20,9:27 AM

cse230

Haskell is a Pure language.

Not a value judgment, but a precise technical statement:

The “Immutability Principle”:

¢ A function must always return the same output for a given input

¢ A function’s behavior should never change

@o x ’Yl/’%(?’fl-_t

No Side Effects

Ewpression

run -time

7

Value

N/

Haskell’s most radical idea: expression =*> value

e When you evaluate an expression you get a value and

e Nothing else happens

20f 17

(" Fu{e

"

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

Specifically, evaluation must not have an side effects

\/\/‘\)
e change a global variable or a {‘(Mf C)THEK TH AN
e print to screen or Vl"j » ABUE
o Roo OUTAUT VAULE
w
Q\% ¢ send an email or

e read afile or

e launch a missile.

But... how to write “Hello, world!”

But, we want to ...

e print to screen
e read afile
¢ send an email

Thankfully, you can do all the above via a very clever idea: Recipe

3of 17 10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

Recipes

This analogy is due to Joachim Brietner (https://www.seas.upenn.edu
/~cis194/fall16/lectures/06-io-and-monads.html)

Haskell has a special type called I0 — which you can think of as Recipe

type Recipe@= 10 a

Avalue of type Recipe a

e is a description of a computation that can have side-effects

e which when executed performs some effectful I/O operations

e to produce a value of type a.

Recipes have No Side Effects

A value of type Recipe a is

4of 17 10/29/20,9:27 AM

cse230

¢ A description of a computation that can have side-effects

CAKE S
howToSa?ES

saltDarkChoco :: Cake

C::laowﬁDth

Cake vs. Recipe

(L) chocolate cake, (R) a sequence of instructions on how to make a cake.
They are different (Hint: only one of them is delicious.)

Merely having a Recipe Cake has no effects! The recipe

e Does not make your oven hot

e Does not make your your floor dirty

Only One Way to Execute Recipes

Haskell looks for a special value

main :: Recipe ()

50f 17

g

e
Cale

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

10/29/20,9:27 AM

cse230

60f 17

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

The value associated with main is handed to the runtime system and
executed

Baker Aker

The Haskell runtime is a master chef who is the only one allowed to cook!

How to write an App in Haskell

Make a Recipe () thatis handed off to the master chef main.
e main can be arbitrarily complicated

e composed of smaller sub-recipes

10/29/20, 9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

A Recipe to Print to Screen

putStrLn :: String -> Recipe ()

The function putStrLn

e takes asinputa String

e returns as output a Recipe ()

putStrLn msg isa Recipe () - when executed prints out msg on the
screen.

main :: Recipe ()
main = putStrLn "Hello, world!"

...and we can compile and run it

$ ghc --make hello.hs
$./hello
Hello, world!

7 of 17 10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

QUIZ: How to Print Multiple Things?

Suppose I want to print two things e.g.

$ ghc --make hello.hs
$./hello2

Hello!

World!

Can we try to compile and run this:

main = éutStan "Hello!"j putStrLn "world!"b
—V)
A. Yes! @_aa\@eé) RQCAFe C)

o, there is a type error!

C. No, it compiles but produces a different result!

8of 17 10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

A Collection of Recipes

Is just ... a collection of Recipes!

recPair :: (Recipe (), Recipe ())
(putStrLn "Hello!", putStrLn "World!")

recPair

recList :: [Recipe ()]
[putStrLn "Hello!", putStrLn "World!"]

recList

... we need a way to combine recipes!

Combining? Just do it!
We can combine many recipes into a single one using a do block

foo :: Recipe a3

foo = do r1 --r1 :: Recipe al
r2 -- r2 :: Recipe a?
r3 -- r3 :: Recipe a3

(or if you prefer curly braces to indentation)

90of 17

10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

foo = do { ri; --r1 :: Recipe ai
r2; -- r2 :: Recipe a?
r3 -- r3 :: Recipe a3

Combining? Just do it!
So we can write

main = do putStrLn "Hello!"
putStrLn "World!"

or if you prefer

main = do { putStrLn "Hello!";
putStrLn "World!"

10 of 17 10/29/20,9:27 AM

cse230

11 of 17

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

EXERCISE: Combining Many Recipes

Write a function called sequence that

non-emply

e Takes %list of recipes [r1,...,rn] asinputand

e Returns a single recipe equivalent to do {ri1; ...; rn}

sequence :: [Recipe a] -> Recipe a

sequence rs = ???
When you are done you should see the following behavior

-- Hello.hs

main = sequence [putStrLn "Hello!", putStrLn "World!"]

and then

$ ghc --make Hello.hs
$./hello

Hello!

World!

10/29/20,9:27 AM

cse230

Using the Results of (Sub-) Recipes

Suppose we want a function that asks for the user’s name

$. /hello (’ﬂ""H putstelin

What is your name?

Ranjit # <<<<< user jenters

Hello Ranjit! —
~— puStiw

We can use the following sub-recipes

-- | read and return a line from stdin as String

getLine :: Recipe String

G\ J

-- take a string s, return a recipe that prints s

putStrLn :: String -> Recipe ()

But how to

e Combine the two sub-recipes while
¢ Passing the result of the first sub-recipe to the second.

12 of 17

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

Naming Recipe Results via “Assignment’

You can write
X/ <- recipe

to name the result of executing recipe

¢ X ¢an be used to refer to the result in later code

Naming Recipe Results via “Assignment’

Lets, write a function that asks for the user’s name

main = ask
ask :: Recipe ()

ask = do name <- getlLine;
putStrLn ("Hello " ++ name ++ "!")

13 of 17

4

)

10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

Which produces the desired result

$./hello
What is your name?
Ranjit # user enters

Hello Ranjit!

EXERCISE

Modify the above code so that the program repeatedly asks for the users’s

name until they provide a non-empty string.
-- Hello.hs

main = repeatAsk

repeatAsk :: Recipe ()

repeatAsk = _fill_this_in

isEmpty :: String -> Bool
isEmpty s = length s ==

14 of 17 10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

When you are done you should get the following behavior

$ ghc --make hello.hs

$./hello

What is your name?

user hits return
What is your name?

user hits return
What is your name?

user hits return
What is your name?
Ranjit # user enters
Hello Ranjit!

EXERCISE

Modify your code to also print out a count in the prompt

15 of 17 10/29/20,9:27 AM

cse230

16 of 17

$ ghc --make hello.hs

$./hello
(0) What is your

(1) What is your
(2) What is your
(3) What is your

Ranjit
Hello Ranjit!

name?

name?

name?

name?

https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

user hits return

user hits return

user hits return

user enters

That’s all about IO

You should be able to implement build from Directory.hs

Using these library functions imported at the top of the file

import System.FilePath

import System.Directory (doesFileExist, listDirectory)

The functions are

takeDirectory

takeFileName

(</>)

doesFileExist

listDirectory

hoogle the documentation to learn about how to use them.

(takeDirectory, takeFileName, (</>))

10/29/20,9:27 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

(https://ucsd-cse230.github.io/fa20/feed.xml)
(https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469)
(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin
Ronacher (http://lucumr.pocoo.org), suggest improvements here
(https://github.com/ucsd-progsys/liquidhaskell-blog/).

17 of 17

10/29/20,9:27 AM

