
Bottling Computation Patterns

Polymorphism and HOFs are the Secret
Sauce
Refactor arbitrary repeated code patterns …

… into precisely specified and reusable functions

EXERCISE: Iteration
Write a function that squares a list of Int

squares :: [Int] -> [Int]

squares ns = ???

When you are done you should see

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

1 of 28 10/27/20, 9:28 AM

>>> squares [1,2,3,4,5]

[1,4,9,16,25]

Pattern: Iteration
Next, lets write a function that converts a String to uppercase.

>>> shout "hello"

"HELLO"

Recall that in Haskell, a String is just a [Char] .

shout :: [Char] -> [Char]

shout = ???

Hoogle (http://haskell.org/hoogle) to see how to transform an individual

Char

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

2 of 28 10/27/20, 9:28 AM

Iteration
Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA

(http://www.livescience.com/health/070412_rhesus_monkeys.html)

Super common computation pattern!

Abstract Iteration “Pattern” into Function
Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental di!erences

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

3 of 28 10/27/20, 9:28 AM

-- rename 'squares' to 'foo'

foo [] = []

foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] = []

foo (x:xs) = (toUpper x) : foo xs

Step 2 Identify what is di!erent

In squares we transform x to x * x

In shout we transform x to Data.Char.toUpper x

Step 3 Make di!erences a parameter

Make transform a parameter f

foo f [] = []

foo f (x:xs) = (f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map)

map f [] = []

map f (x:xs) = (f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

4 of 28 10/27/20, 9:28 AM

QUIZ
What is the type of map ?

map :: ???

map f [] = []

map f (x:xs) = (f x) : map f xs

A. (Int -> Int) -> [Int] -> [Int]

B. (a -> a) -> [a] -> [a]

C. [a] -> [b]

D. (a -> b) -> [a] -> [b]

E. (a -> b) -> [a] -> [a]

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

5 of 28 10/27/20, 9:28 AM

aka totter

doTwice fx f n

a

Ac Az Az AD

In.tn iss.tbD

The type precisely describes map
>>> :type map

map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

a transformer of type a -> b

a list of values [a]

and it returns as output

a list of values [b]

that can only come by applying f to each element of the input list.

Reusing the Pattern
Lets reuse the pattern by instantiating the transformer

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

6 of 28 10/27/20, 9:28 AM

shout
-- OLD with recursion

shout :: [Char] -> [Char]

shout [] = []

shout (x:xs) = Char.toUpper x : shout xs

-- NEW with map

shout :: [Char] -> [Char]

shout xs = map (???) xs

squares
-- OLD with recursion

squares :: [Int] -> [Int]

squares [] = []

squares (x:xs) = (x * x) : squares xs

-- NEW with map

squares :: [Int] -> [Int]

squares xs = map (???) xs

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

7 of 28 10/27/20, 9:28 AM

EXERCISE
Suppose I have the following type

type Score = (Int, Int) -- pair of scores for Hw0, Hw1

Use map to write a function

total :: [Score] -> [Int]

total xs = map (???) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]

[30, 20, 43, 30]

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

8 of 28 10/27/20, 9:28 AM

The Case of the Missing Parameter
Note that we can write shout like this

shout :: [Char] -> [Char]

shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter
In Haskell, the following all mean the same thing

Suppose we define a function

add :: Int -> Int -> Int

add x y = x + y

Now the following all mean the same thing

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

9 of 28 10/27/20, 9:28 AM

plus x y = add x y

plus x = add x

plus = add

Why? equational reasoning! In general

foo x = e x

-- is equivalent to

foo = e

as long as x doesn’t appear in e .

Thus, to save some typing, we omit the extra parameter.

Pattern: Reduction
Computation patterns are everywhere lets revisit our old sumList

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

10 of 28 10/27/20, 9:28 AM

dir f113T

Her reduce

patterns

HOIs Bottling Patterns

HelloWorld lo

x x x

sumList :: [Int] -> Int

sumList [] = 0

sumList (x:xs) = x + sumList xs

Next, a function that concatenates the String s in a list

catList :: [String] -> String

catList [] = ""

catList (x:xs) = x ++ (catList xs)

Lets spot the pattern!
Step 1 Rename

foo [] = 0

foo (x:xs) = x + foo xs

foo [] = ""

foo (x:xs) = x ++ foo xs

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

11 of 28 10/27/20, 9:28 AM

Step 2 Identify what is di!erent

1. ???

2. ???

Step 3 Make di!erences a parameter

foo p1 p2 [] = ???

foo p1 p2 (x:xs) = ???

EXERCISE: Reduction/Folding
This pattern is commonly called reducing or folding

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

Can you figure out how sumList and catList are just instances of foldr ?

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

12 of 28 10/27/20, 9:28 AM

sumlist foldr t 0

Cattist foldr H

sumList :: [Int] -> Int

sumList xs = foldr (?op) (?base) xs

catList :: [String] -> String

catList xs = foldr (?op) (?base) xs

Executing foldr
To develop some intuition about foldr lets “run” it a few times by hand.

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

13 of 28 10/27/20, 9:28 AM

foldr op b (a1:a2:a3:a4:[])

==>

 a1 `op` (foldr op b (a2:a3:a4:[]))

==>

 a1 `op` (a2 `op` (foldr op b (a3:a4:[])))

==>

 a1 `op` (a2 `op` (a3 `op` (foldr op b (a4:[]))))

==>

 a1 `op` (a2 `op` (a3 `op` (a4 `op` foldr op b [])))

==>

 a1 `op` (a2 `op` (a3 `op` (a4 `op` b)))

Look how it mirrors the structure of lists!

(:) is replaced by op

[] is replaced by base

So

foldr (+) 0 (x1:x2:x3:x4:[])

==> x1 + (x2 + (x3 + (x4 + 0))

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

14 of 28 10/27/20, 9:28 AM

folde

oxioxdoxDoxcDLxFCeELxsi uj.g D
k I ow

0 X ohXzop op Xyop bfoldl o b x 4243 bout

box oxyxD I z ofCasto Canto8D
It It It It

Typing foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

foldr takes as input

a reducer function of type a -> b -> b

a base value of type b

a list of values to reduce [a]

and returns as output

a reduced value b

QUIZ
Recall the function to compute the len of a list

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

15 of 28 10/27/20, 9:28 AM

Afi
b by b a b

foIdr op b ai az az au E
g

aio oCaz o Lau o b
In

a b b

len :: [a] -> Int

len [] = 0

len (x:xs) = 1 + len xs

Which of these is a valid implementation of Len

A. len = foldr (\n -> n + 1) 0

B. len = foldr (\n m -> n + m) 0

C. len = foldr (_ n -> n + 1) 0

D. len = foldr (\x xs -> 1 + len xs) 0

E. All of the above

The Missing Parameter Revisited
We wrote foldr as

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

16 of 28 10/27/20, 9:28 AM

Len
x

t's c
itch D

Axe ji

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

but can also write this

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base = go

where

 go [] = base

 go (x:xs) = op x (go xs)

Can someone explain where the xs went missing ?

Trees
Recall the Tree a type from last time

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

17 of 28 10/27/20, 9:28 AM

data Tree a

= Leaf

| Node a (Tree a) (Tree a)

For example here’s a tree

tree2 :: Tree Int

tree2 = Node 2 Leaf Leaf

tree3 :: Tree Int

tree3 = Node 3 Leaf Leaf

tree123 :: Tree Int

tree123 = Node 1 tree2 tree3

Some Functions on Trees
Lets write a function to compute the height of a tree

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

18 of 28 10/27/20, 9:28 AM

106

height :: Tree a -> Int

height Leaf = 0

height (Node x l r) = 1 + max (height l) (height l)

Here’s another to sum the leaves of a tree:

sumTree :: Tree Int -> Int

sumTree Leaf = ???

sumTree (Node x l r) = ???

Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]

toList Leaf = ???

toList (Node x l r) = ???

Lets give it a whirl

>>> height tree123

2

>>> sumTree tree123

6

>>> toList tree123

[1,2,3]

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

19 of 28 10/27/20, 9:28 AM

o

Pattern: Tree Fold
Can you spot the pattern? Those three functions are almost the same!

Step 1: Rename to maximize similarity

-- height

foo Leaf = 0

foo (Node x l r) = 1 + max (foo l) (foo l)

-- sumTree

foo Leaf = 0

foo (Node x l r) = foo l + foo r

-- toList

foo Leaf = []

foo (Node x l r) = x : foo l ++ foo r

Step 2: Identify the di!erences

1. ???

2. ???

Step 3 Make di!erences a parameter

foo p1 p2 Leaf = ???

foo p1 p2 (Node x l r) = ???

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

20 of 28 10/27/20, 9:28 AM

Pattern: Folding on Trees
tFold op b Leaf = b

tFold op b (Node x l r) = op x (tFold op b l) (tFold op b r)

Lets try to work out the type of tFold !

tFold :: t_op -> t_b -> Tree a -> t_out

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

21 of 28 10/27/20, 9:28 AM

Op b

g y
Op V 3
411 IN

opV y
b f Eb

bc t p

QUIZ
Suppose that t :: Tree Int .

What does tFold (\x y z -> y + z) 1 t return?

a. 0

b. the largest element in the tree t

c. the height of the tree t

d. the number-of-leaves of the tree t

e. type error

EXERCISE
Write a function to compute the largest element in a tree or 0 if tree is

empty or all negative.

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

22 of 28 10/27/20, 9:28 AM

treeMax :: Tree Int -> Int

treeMax t = tFold f b t

where

 f = ???

 b = ???

Map over Trees
We can also write a tmap equivalent of map for Tree s

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap f (Leaf x) = Leaf (f x)

treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)

which gives

>>> treeMap (\n -> n * n) tree123 -- square all elements

of tree

Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

23 of 28 10/27/20, 9:28 AM

EXERCISE
Recursion is HARD TO READ do we really have to use it ?

Lets rewrite treeMap using tFold !

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap f t = tFold op base t

where

 op = ???

 base = ???

When you are done, we should get

>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hip

po" Leaf Leaf)

>>> treeMap reverse animals

Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

24 of 28 10/27/20, 9:28 AM

Examples: foldDir
data Dir a

= Fil a -- ^ A single file named `a`

| Sub a [Dir a] -- ^ A sub-directory name `a` with cont

ents `[Dir a]`

data DirElem a

= SubDir a -- ^ A single Sub-Directory named `a`

| File a -- ^ A single File named `a`

foldDir :: ([a] -> r -> DirElem a -> r) -> r -> Dir a -> r

foldDir f r0 dir = go [] r0 dir

where

 go stk r (Fil a) = f stk r (File a)

 go stk r (Sub a ds) = L.foldl' (go stk') r' ds

where

 r' = f stk r (SubDir a)

 stk' = a:stk

foldDir takes as input

an accumulator f of type [a] -> r -> DirElem a -> r

takes as input the path [a] , the current result r , the next

DirElem [a]

and returns as output the new result r

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

25 of 28 10/27/20, 9:28 AM

WEDN0 www.Y.II.IE

an initial value of the result r0 and

directory to fold over dir

And returns the result of running the accumulator over the whole dir .

Examples: Spotting Patterns In The “Real”
World
These patterns in “toy” functions appear regularly in “real” code

1. Start with beginner’s version riddled with explicit recursion (swizzle-

v0.html).

2. Spot the patterns and eliminate recursion using HOFs (swizzle-

v1.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without

duplication (swizzle-v2.html).

Try it yourself

Rewrite the code that swizzles Char to use the Map k v type in

Data.Map

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

26 of 28 10/27/20, 9:28 AM

Which is more readable? HOFs or
Recursion
At first, recursive versions of shout and squares are easier to follow

fold takes a bit of getting used to!

With practice, the higher-order versions become easier

only have to understand specific operations

recursion is lower-level & have to see “loop” structure

worse, potential for making silly o!-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution

(http://en.wikipedia.org/wiki/MapReduce)

Can parallelize and distribute computation patterns just once

(https://www.usenix.org/event/osdi04/tech/full_papers

/dean/dean.pdf)

Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or

thousands of instances!

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

27 of 28 10/27/20, 9:28 AM

2002

Hoff FTW OEwtR Du

(https://ucsd-cse230.github.io/fa20/feed.xml)

(https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin

Ronacher (http://lucumr.pocoo.org), suggest improvements here

(https://github.com/ucsd-progsys/liquidhaskell-blog/).

cse230 https://ucsd-cse230.github.io/fa20/lectures/07-bottling-patterns...

28 of 28 10/27/20, 9:28 AM

I

Haskell Crash Course Part III

Writing Applications
Lets write the classic “Hello world!” program.

For example, in Python you may write:

def main():

print "hello, world!"

main()

and then you can run it:

$ python hello.py

hello world!

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

1 of 17 10/29/20, 9:27 AM

01 trees due Friday 11 6

Haskell is a Pure language.
Not a value judgment, but a precise technical statement:

The “Immutability Principle”:

A function must always return the same output for a given input

A function’s behavior should never change

No Side Effects

Haskell’s most radical idea: expression =*> value

When you evaluate an expression you get a value and

Nothing else happens

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

2 of 17 10/29/20, 9:27 AM

foo In Out

pure

Specifically, evaluation must not have an side e!ects

change a global variable or

print to screen or

read a file or

send an email or

launch a missile.

But… how to write “Hello, world!”
But, we want to …

print to screen

read a file

send an email

Thankfully, you can do all the above via a very clever idea: Recipe

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

3 of 17 10/29/20, 9:27 AM

in

anything OTHERTHAN

0qqw
the OUTPUTVALUE

Recipes
This analogy is due to Joachim Brietner (https://www.seas.upenn.edu

/~cis194/fall16/lectures/06-io-and-monads.html)

Haskell has a special type called IO – which you can think of as Recipe

type Recipe a = IO a

A value of type Recipe a

is a description of a computation that can have side-e!ects

which when executed performs some e!ectful I/O operations

to produce a value of type a .

Recipes have No Side Effects
A value of type Recipe a is

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

4 of 17 10/29/20, 9:27 AM

Oy

A description of a computation that can have side-e!ects

Cake vs. Recipe

(L) chocolate cake, (R) a sequence of instructions on how to make a cake.

They are di!erent (Hint: only one of them is delicious.)

Merely having a Recipe Cake has no e!ects! The recipe

Does not make your oven hot

Does not make your your floor dirty

Only One Way to Execute Recipes
Haskell looks for a special value

main :: Recipe ()

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

5 of 17 10/29/20, 9:27 AM

CAKE DESChowtobakea
Cale

The value associated with main is handed to the runtime system and

executed

Baker Aker

The Haskell runtime is a master chef who is the only one allowed to cook!

How to write an App in Haskell
Make a Recipe () that is handed o! to the master chef main .

main can be arbitrarily complicated

composed of smaller sub-recipes

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

6 of 17 10/29/20, 9:27 AM

A Recipe to Print to Screen
putStrLn :: String -> Recipe ()

The function putStrLn

takes as input a String

returns as output a Recipe ()

putStrLn msg is a Recipe () - when executed prints out msg on the

screen.

main :: Recipe ()

main = putStrLn "Hello, world!"

… and we can compile and run it

$ ghc --make hello.hs

$./hello

Hello, world!

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

7 of 17 10/29/20, 9:27 AM

QUIZ: How to Print Multiple Things?
Suppose I want to print two things e.g.

$ ghc --make hello.hs

$./hello2

Hello!

World!

Can we try to compile and run this:

main = (putStrLn "Hello!", putStrLn "World!")

A. Yes!

B. No, there is a type error!

C. No, it compiles but produces a di!erent result!

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

8 of 17 10/29/20, 9:27 AM

Taipei Tapes

A Collection of Recipes
Is just … a collection of Recipes!

recPair :: (Recipe (), Recipe ())

recPair = (putStrLn "Hello!", putStrLn "World!")

recList :: [Recipe ()]

recList = [putStrLn "Hello!", putStrLn "World!"]

… we need a way to combine recipes!

Combining? Just do it!
We can combine many recipes into a single one using a do block

foo :: Recipe a3

foo = do r1 -- r1 :: Recipe a1

 r2 -- r2 :: Recipe a2

 r3 -- r3 :: Recipe a3

(or if you prefer curly braces to indentation)

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

9 of 17 10/29/20, 9:27 AM

1

foo = do { r1; -- r1 :: Recipe a1

 r2; -- r2 :: Recipe a2

 r3 -- r3 :: Recipe a3

 }

The do block combines sub-recipes r1 , r2 and r3 into a new recipe that

Will execute each sub-recipe in sequence and

Return the value of type a3 produced by the last recipe r3

Combining? Just do it!
So we can write

main = do putStrLn "Hello!"

putStrLn "World!"

or if you prefer

main = do { putStrLn "Hello!";

putStrLn "World!"

 }

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

10 of 17 10/29/20, 9:27 AM

EXERCISE: Combining Many Recipes
Write a function called sequence that

Takes a list of recipes [r1,...,rn] as input and

Returns a single recipe equivalent to do {r1; ...; rn}

sequence :: [Recipe a] -> Recipe a

sequence rs = ???

When you are done you should see the following behavior

-- Hello.hs

main = sequence [putStrLn "Hello!", putStrLn "World!"]

and then

$ ghc --make Hello.hs

$./hello

Hello!

World!

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

11 of 17 10/29/20, 9:27 AM

non empty
n

Using the Results of (Sub-) Recipes
Suppose we want a function that asks for the user’s name

$./hello

What is your name?

Ranjit # <<<<< user enters

Hello Ranjit!

We can use the following sub-recipes

-- | read and return a line from stdin as String

getLine :: Recipe String

-- take a string s, return a recipe that prints s

putStrLn :: String -> Recipe ()

But how to

Combine the two sub-recipes while

Passing the result of the first sub-recipe to the second.

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

12 of 17 10/29/20, 9:27 AM

printlputslrc.ir

getting

putstrint

gettin putstrh

Naming Recipe Results via “Assignment”
You can write

x <- recipe

to name the result of executing recipe

x can be used to refer to the result in later code

Naming Recipe Results via “Assignment”
Lets, write a function that asks for the user’s name

main = ask

ask :: Recipe ()

ask = do name <- getLine;

putStrLn ("Hello " ++ name ++ "!")

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

13 of 17 10/29/20, 9:27 AM

O

O

Which produces the desired result

$./hello

What is your name?

Ranjit # user enters

Hello Ranjit!

EXERCISE
Modify the above code so that the program repeatedly asks for the users’s

name until they provide a non-empty string.

-- Hello.hs

main = repeatAsk

repeatAsk :: Recipe ()

repeatAsk = _fill_this_in

isEmpty :: String -> Bool

isEmpty s = length s == 0

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

14 of 17 10/29/20, 9:27 AM

When you are done you should get the following behavior

$ ghc --make hello.hs

$./hello

What is your name?

user hits return

What is your name?

user hits return

What is your name?

user hits return

What is your name?

Ranjit # user enters

Hello Ranjit!

EXERCISE
Modify your code to also print out a count in the prompt

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

15 of 17 10/29/20, 9:27 AM

Non emptystring

$ ghc --make hello.hs

$./hello

(0) What is your name?

user hits return

(1) What is your name?

user hits return

(2) What is your name?

user hits return

(3) What is your name?

Ranjit # user enters

Hello Ranjit!

That’s all about IO
You should be able to implement build from Directory.hs

Using these library functions imported at the top of the file

import System.FilePath (takeDirectory, takeFileName, (</>))

import System.Directory (doesFileExist, listDirectory)

The functions are

takeDirectory

takeFileName

(</>)

doesFileExist

listDirectory

hoogle the documentation to learn about how to use them.

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

16 of 17 10/29/20, 9:27 AM

(https://ucsd-cse230.github.io/fa20/feed.xml)

(https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin

Ronacher (http://lucumr.pocoo.org), suggest improvements here

(https://github.com/ucsd-progsys/liquidhaskell-blog/).

cse230 https://ucsd-cse230.github.io/fa20/lectures/04-haskell-io.html

17 of 17 10/29/20, 9:27 AM

