
Typeclasses

Overloading Operators: Arithmetic
The + operator works for a bunch of di!erent types.

For Integer :

λ> 2 + 3

5

for Double precision floats:

λ> 2.9 + 3.5

6.4

Overloading Comparisons
Similarly we can compare di!erent types of values

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

1 of 40 11/5/20, 9:25 AM

tnterfacesTaya190
Ctt

Eastafraeshfihiehh.su

λ> 2 == 3

False

λ> [2.9, 3.5] == [2.9, 3.5]

True

λ> ("cat", 10) < ("cat", 2)

False

λ> ("cat", 10) < ("cat", 20)

True

Ad-Hoc Overloading
Seems unremarkable?

Languages since the dawn of time have supported “operator overloading”

To support this kind of ad–hoc polymorphism

Ad-hoc: “created or done for a particular purpose as necessary.”

You really need to add and compare values of multiple types!

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

2 of 40 11/5/20, 9:25 AM

yea
ignitable

ord string Int

special case

is 5m i

Haskell has no caste system
No distinction between operators and functions

All are first class citizens!

But then, what type do we give to functions like + and == ?

QUIZ
Which of the following would be appropriate types for (+) ?

(A) (+) :: Integer -> Integer -> Integer

(B) (+) :: Double -> Double -> Double

(C) (+) :: a -> a -> a

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

3 of 40 11/5/20, 9:25 AM

X 2.3 4.1 would
not

X 1 2 check

X True False

wax iz sett

(D) All of the above

(E) None of the above

Integer -> Integer -> Integer is bad because?

Then we cannot add Double s!

Double -> Double -> Double is bad because?

Then we cannot add Double s!

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

4 of 40 11/5/20, 9:25 AM

x

a -> a -> a is bad because?

That doesn’t make sense, e.g. to add two Bool or two [Int] or two

functions!

Type Classes for Ad Hoc Polymorphism

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

5 of 40 11/5/20, 9:25 AM

Haskell solves this problem with typeclasses

Introduced by Wadler and Blott (http://portal.acm.org

/citation.cfm?id=75283)

BTW: The paper is one of the clearest examples of academic writing I have seen.

The next time you hear a curmudgeon say all the best CS was done in the 60s or

70s just point them to the above.

Qualified Types
To see the right type, lets ask:

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

6 of 40 11/5/20, 9:25 AM

λ> :type (+)

(+) :: (Num a) => a -> a -> a

We call the above a qualified type. Read it as +

takes in two a values and returns an a value

for any type a that

is a Num or

implements the Num interface or

is an instance of a Num .

The name Num can be thought of as a predicate or constraint over types.

Some types are Num s
Examples include Integer , Double etc

Any such values of those types can be passed to + .

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

7 of 40 11/5/20, 9:25 AM

fi T

2 3

Other types are not Num s
Examples include Char , String , functions etc,

Values of those types cannot be passed to + .

λ> True + False

<interactive>:15:6:

No instance for (Num Bool) arising from a use of ‘+’

In the expression: True + False

In an equation for ‘it’: it = True + False

Aha! Now those no instance for error messages should make sense!

Haskell is complaining that True and False are of type Bool

and that Bool is not an instance of Num .

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

8 of 40 11/5/20, 9:25 AM

Type Class is a Set of Operations
A typeclass is a collection of operations (functions) that must exist for the

underlying type.

Similar but di!erent to Java interfaces (https://www.parsonsmatt.org

/2017/01/07/how_do_type_classes_di!er_from_interfaces.html)

The Eq Type Class
The simplest typeclass is perhaps, Eq

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

9 of 40 11/5/20, 9:25 AM

Num a

f

C
fromInteger

class Eq a where

 (==) :: a -> a -> Bool

 (/=) :: a -> a -> Bool

A type a is an instance of Eq if there are two functions

== and /=

That determine if two a values are respectively equal or disequal.

The Show Type Class
The typeclass Show requires that instances be convertible to String (which can

then be printed out)

class Show a where

 show :: a -> String

Indeed, we can test this on di!erent (built-in) types

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

10 of 40 11/5/20, 9:25 AM

λ> show 2

"2"

λ> show 3.14

"3.14"

λ> show (1, "two", ([],[],[]))

"(1,\"two\",([],[],[]))"

(Hey, whats up with the funny \" ?)

Unshowable Types
When we type an expression into ghci ,

it computes the value,

then calls show on the result.

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

11 of 40 11/5/20, 9:25 AM

Thus, if we create a new type by

data Unshowable = A | B | C

and then create values of the type,

λ> let x = A

λ> :type x

x :: Unshowable

but then we cannot view them

λ> x

<interactive>:1:0:

No instance for (Show Unshowable)

 arising from a use of `print' at <interactive>:1:0

 Possible fix: add an instance declaration for (Show Unshowabl

e)

 In a stmt of a 'do' expression: print it

and we cannot compare them!

λ> x == x

<interactive>:1:0:

No instance for (Eq Unshowable)

 arising from a use of `==' at <interactive>:1:0-5

 Possible fix: add an instance declaration for (Eq Unshowable)

 In the expression: x == x

 In the definition of `it': it = x == x

Again, the previously incomprehensible type error message should make sense to

you.

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

12 of 40 11/5/20, 9:25 AM

Creating Instances
Tell Haskell how to show or compare values of type Unshowable

By creating instances of Eq and Show for that type:

instance Eq Unshowable where

 (==) A A = True -- True if both inputs are A

 (==) B B = True -- ...or B

 (==) C C = True -- .. or C

 (==) _ _ = False -- otherwise

 (/=) x y = not (x == y) -- Test if `x == y` and negate result!

EXERCISE
Lets create an instance for Show Unshowable

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

13 of 40 11/5/20, 9:25 AM

When you are done we should get the following behavior

>>> x = [A, B, C]

[A, B, C]

Automatic Derivation
We should be able to compare and view Unshowble automatically"

Haskell lets us automatically derive implementations for some standard classes

data Showable = A' | B' | C'

deriving (Eq, Show) -- tells Haskell to automatically generate i

nstances

Now we have

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

14 of 40 11/5/20, 9:25 AM

λ> let x' = A'

λ> :type x'

x' :: Showable

λ> x'

A'

λ> x' == x'

True

λ> x' == B'

False

The Num typeclass
Let us now peruse the definition of the Num typeclass.

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

15 of 40 11/5/20, 9:25 AM

λ> :info Num

class (Eq a, Show a) => Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 (-) :: a -> a -> a

 negate :: a -> a

 abs :: a -> a

 signum :: a -> a

 fromInteger :: Integer -> a

A type a is an instance of (i.e. implements) Num if

1. The type is also an instance of Eq and Show , and

2. There are functions to add, multiply, etc. values of that type.

That is, we can do comparisons and arithmetic on the values.

Standard Typeclass Hierarchy

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

16 of 40 11/5/20, 9:25 AM

Haskell comes equipped with a rich set of built-in classes.

Standard Typeclass Hierarchy

In the above picture, there is an edge from Eq and Show to Num because for

something to be a Num it must also be an Eq and Show .

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

17 of 40 11/5/20, 9:25 AM

The Ord Typeclass
Another typeclass you’ve used already is the one for Ord ering values:

λ> :info (<)

class Eq a => Ord a where

...

 (<) :: a -> a -> Bool

...

For example:

λ> 2 < 3

True

λ> "cat" < "dog"

True

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

18 of 40 11/5/20, 9:25 AM

QUIZ
Recall the datatype:

data Showable = A' | B' | C' deriving (Eq, Show)

What is the result of:

λ> A' < B'

(A) True (B) False (C) Type error (D) Run-time exception

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

19 of 40 11/5/20, 9:25 AM

Using Typeclasses
Typeclasses integrate with the rest of Haskell’s type system.

Lets build a small library for Environments mapping keys k to values v

data Table k v

= Def v -- default value `v` to be used for "mis

sing" keys

| Bind k v (Table k v) -- bind key `k` to the value `v`

deriving (Show)

QUIZ
What is the type of keys

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

20 of 40 11/5/20, 9:25 AM

keys (Def _) = []

keys (Bind k _ rest) = k : keys rest

A. Table k v -> k

B. Table k v -> [k]

C. Table k v -> [(k, v)]

D. Table k v -> [v]

E. Table k v -> v

An API for Table
Lets write a small API for Table

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

21 of 40 11/5/20, 9:25 AM

-- >>> let env0 = set "cat" 10.0 (set "dog" 20.0 (Def 0))

-- >>> set "cat" env0

-- 10

-- >>> get "dog" env0

-- 20

-- >>> get "horse" env0

-- 0

Ok, lets implement!

-- | 'add key val env' returns a new env that additionally maps `k

ey` to `val`

set :: k -> v -> Table k v -> Table k v

set key val env = ???

-- | 'get key env' returns the value of `key` and the "default" if

no value is found

get :: k -> Table k v -> v

get key env = ???

Oops, y u no check?

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

22 of 40 11/5/20, 9:25 AM

Constraint Propagation
Lets delete the types of set and get

to see what Haskell says their types are!

λ> :type get

get :: (Eq k) => k -> v -> Table k v -> Table k v

We can use any k value as a key - if k is an instance of i.e. “implements” the Eq

typeclass.

How, did GHC figure this out?

If you look at the code for get you’ll see that we check if two keys are equal!

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

23 of 40 11/5/20, 9:25 AM

HOMEWORK
Write an optimized version of

set that ensures the keys are in increasing order,

get that gives up and returns the “default” the moment we see a key thats

larger than the one we’re looking for.

(How) do you need to change the type of Table ?

(How) do you need to change the types of get and set ?

Explicit Signatures
Sometimes the use of type classes requires explicit annotations

which a!ect the code’s behavior

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

24 of 40 11/5/20, 9:25 AM

get Z

so.IE
e e

7 3

Read is a standard typeclass that is the “opposite” of Show

where any instance a of Read has a “parsing” function

read :: (Read a) => String -> a

QUIZ
What does the expression read "2" evaluate to?

(A) compile time error

(B) "2" :: String

(C) 2 :: Integer

(D) 2.0 :: Double

(E) run-time exception

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

25 of 40 11/5/20, 9:25 AM

Compiler is puzzled!
Doesn’t know what type to convert the string to!

Doesn’t know which of the read functions to run!

Did we want an Int or a Double or maybe something else altogether?

Explicit Type Annotation

needed to tell Haskell what to convert the string to:

>>> (read "2") :: Int

2

>>> (read "2") :: Float

2.0

Note the di!erent results due to the di!erent types.

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

26 of 40 11/5/20, 9:25 AM

Creating Typeclasses
Typeclasses are useful for many di!erent things.

We will see some of those over the next few lectures.

Lets conclude today’s class with a quick example that provides a small taste.

JSON
JavaScript Object Notation or JSON (http://www.json.org/)

is a simple format for transferring data around.

Here is an example:

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

27 of 40 11/5/20, 9:25 AM

EQ ORD SHOW

NUM

eventweb App ERER

cred

TSONTI

{ "name" : "Ranjit"

, "age" : 42.0

, "likes" : ["guacamole", "coffee", "tacos"]

, "hates" : ["waiting" , "spiders"]

, "lunches" : [{"day" : "monday", "loc" : "zanzibar"}

, {"day" : "tuesday", "loc" : "farmers market"}

, {"day" : "wednesday", "loc" : "harekrishna"}

, {"day" : "thursday", "loc" : "faculty club"}

, {"day" : "friday", "loc" : "coffee cart"}]

}

In brief, each JSON object is either

a base value like a string, a number or a boolean,

an (ordered) array of objects, or

a set of string-object pairs.

A JSON Datatype

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

28 of 40 11/5/20, 9:25 AM

STRING
NUMBER

ARRAY STR

ARAM
I

key Val

We can represent (a subset of) JSON values with the Haskell datatype

data JVal

= JStr String

| JNum Double

| JBool Bool

| JObj [(String, JVal)]

| JArr [JVal]

deriving (Eq, Ord, Show)

Thus, the above JSON value would be represented by the JVal

js1 :: JVal

js1 =

JObj [("name", JStr "Ranjit")

 ,("age", JNum 41.0)

 ,("likes", JArr [JStr "guacamole", JStr "coffee", JStr "

bacon"])

 ,("hates", JArr [JStr "waiting" , JStr "grapefruit"])

 ,("lunches", JArr [JObj [("day", JStr "monday")

 ,("loc", JStr "zanzibar")]

 , JObj [("day", JStr "tuesday")

 ,("loc", JStr "farmers market")]

 , JObj [("day", JStr "wednesday")

 ,("loc", JStr "hare krishna")]

 , JObj [("day", JStr "thursday")

 ,("loc", JStr "faculty club")]

 , JObj [("day", JStr "friday")

 ,("loc", JStr "coffee cart")]

])

]

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

29 of 40 11/5/20, 9:25 AM

I BASE

REL
3 ARRAY

Serializing Haskell Values to JSON
Lets write a small library to serialize Haskell values as JSON.

We could write a bunch of functions like

doubleToJSON :: Double -> JVal

doubleToJSON = JNum

stringToJSON :: String -> JVal

stringToJSON = JStr

boolToJSON :: Bool -> JVal

boolToJSON = JBool

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

30 of 40 11/5/20, 9:25 AM

Ordinary TValHaskell
Int Bool Skis Map lutshij

Serializing Collections
But what about collections, namely lists of things?

doublesToJSON :: [Double] -> JVal

doublesToJSON xs = JArr (map doubleToJSON xs)

boolsToJSON :: [Bool] -> JVal

boolsToJSON xs = JArr (map boolToJSON xs)

stringsToJSON :: [String] -> JVal

stringsToJSON xs = JArr (map stringToJSON xs)

This is getting rather tedious

We are rewriting the same code :(

Serializing Collections (refactored with HOFs)
You could abstract by making the individual-element-converter a parameter

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

31 of 40 11/5/20, 9:25 AM

xsToJSON :: (a -> JVal) -> [a] -> JVal

xsToJSON f xs = JArr (map f xs)

xysToJSON :: (a -> JVal) -> [(String, a)] -> JVal

xysToJSON f kvs = JObj (map (\(k, v) -> (k, f v)) kvs)

Serializing Collections Still Tedious
As we have to specify the individual data converter (yuck!)

λ> doubleToJSON 4

JNum 4.0

λ> xsToJSON stringToJSON ["coffee", "guacamole", "bacon"]

JArr [JStr "coffee",JStr "guacamole",JStr "bacon"]

λ> xysToJSON stringToJSON [("day", "monday"), ("loc", "zanzibar")]

JObj [("day",JStr "monday"),("loc",JStr "zanzibar")]

This gets awful when you have richer objects like

lunches = [[("day", "monday"), ("loc", "zanzibar")]

 , [("day", "tuesday"), ("loc", "farmers market")]

]

because we have to go through gymnastics like

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

32 of 40 11/5/20, 9:25 AM

λ> xsToJSON (xysToJSON stringToJSON) lunches

JArr [JObj [("day",JStr "monday") ,("loc",JStr "zanzibar")]

 , JObj [("day",JStr "tuesday") ,("loc",JStr "farmers marke

t")]

]

Yikes. So much for readability

Is it too much to ask for a magical toJSON that just works?

Typeclasses To The Rescue
Lets define a typeclass that describes types a that can be converted to JSON.

class JSON a where

 toJSON :: a -> JVal

Now, just make all the above instances of JSON like so

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

33 of 40 11/5/20, 9:25 AM

instance JSON Double where

 toJSON = JNum

instance JSON Bool where

 toJSON = JBool

instance JSON String where

 toJSON = JStr

This lets us uniformly write

λ> toJSON 4

JNum 4.0

λ> toJSON True

JBool True

λ> toJSON "guacamole"

JStr "guacamole"

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

34 of 40 11/5/20, 9:25 AM

Bootstrapping Instances
Haskell can automatically bootstrap the above to lists and tables!

instance JSON a => JSON [a] where

 toJSON xs = JArr (map toJSON xs)

if a is an instance of JSON ,

then here’s how to convert lists of a to JSON .

λ> toJSON [True, False, True]

JArr [JBln True, JBln False, JBln True]

λ> toJSON ["cat", "dog", "Mouse"]

JArr [JStr "cat", JStr "dog", JStr "Mouse"]

Bootstrapping Lists of Lists!

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

35 of 40 11/5/20, 9:25 AM

λ> toJSON [["cat", "dog"], ["mouse", "rabbit"]]

JArr [JArr [JStr "cat",JStr "dog"],JArr [JStr "mouse",JStr "rabbi

t"]]

Bootstrapping Key-Value Tables
We can pull the same trick with key-value lists

instance (JSON a) => JSON [(String, a)] where

 toJSON kvs = JObj (map (\(k, v) -> (k, toJSON v)) kvs)

after which, we are all set!

λ> toJSON lunches

JArr [JObj [("day",JStr "monday"), ("loc",JStr "zanzibar")]

 , JObj [("day",JStr "tuesday"), ("loc",JStr "farmers marke

t")]

]

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

36 of 40 11/5/20, 9:25 AM

Bootstrapping Tuples
Lets bootstrap the serialization for tuples (upto some fixed size)

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

37 of 40 11/5/20, 9:25 AM

instance (JSON a, JSON b) => JSON ((String, a), (String, b)) where

 toJSON ((k1, v1), (k2, v2)) = JObj

 [(k1, toJSON v1)

 , (k2, toJSON v2)

]

instance (JSON a, JSON b, JSON c) => JSON ((String, a), (String,

b), (String, c)) where

 toJSON ((k1, v1), (k2, v2), (k3, v3)) = JObj

 [(k1, toJSON v1)

 , (k2, toJSON v2)

 , (k3, toJSON v3)

]

instance (JSON a, JSON b, JSON c, JSON d) => JSON ((String, a), (S

tring, b), (String, c), (String,d)) where

 toJSON ((k1, v1), (k2, v2), (k3, v3), (k4, v4)) = JObj

 [(k1, toJSON v1)

 , (k2, toJSON v2)

 , (k3, toJSON v3)

 , (k4, toJSON v4)

]

instance (JSON a, JSON b, JSON c, JSON d, JSON e) => JSON ((Strin

g, a), (String, b), (String, c), (String,d), (String, e)) where

 toJSON ((k1, v1), (k2, v2), (k3, v3), (k4, v4), (k5, v5)) = JObj

 [(k1, toJSON v1)

 , (k2, toJSON v2)

 , (k3, toJSON v3)

 , (k4, toJSON v4)

 , (k5, toJSON v5)

]

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

38 of 40 11/5/20, 9:25 AM

Now, we can simply write

hs = (("name" , "Ranjit")

 ,("age" , 41.0)

 ,("likes" , ["guacamole", "coffee", "bacon"])

 ,("hates" , ["waiting", "grapefruit"])

 ,("lunches", lunches)

)

which is a Haskell value that describes our running JSON example, and can convert

it directly like so

js2 = toJSON hs

EXERCISE: Serializing Tables
To wrap everything up, lets write a routine to serialize our Table

instance JSON (Table k v) where

 toJSON env = ???

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

39 of 40 11/5/20, 9:25 AM

and presto! our serializer just works

>>> env0

Bind "cat" 10.0 (Bind "dog" 20.0 (Def 0))

>>> toJSON env0

JObj [("cat", JNum 10.0)

 , ("dog", JNum 20.0)

 , ("def", JNum 0.0)

]

Thats it for today.

We will see much more typeclass awesomeness in the next few lectures…

(https://ucsd-cse230.github.io/sp20/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com

/ucsd-progsys/liquidhaskell-blog/).

cse230 https://ucsd-cse230.github.io/sp20/lectures/08-typeclasses.html

40 of 40 11/5/20, 9:25 AM

