cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

Functors and Monads

Abstracting Code Patterns

a.k.a. Dont Repeat Yourself

Lists

data List a

=[]
| (:) a (List a)

1 of 21 11/10/20,9:19 AM

cse230

2 of 21

-- >>> inglist [1, 2, 3]
. [111 n, 11211’ 113"]

showlList
showlList []
showList (n:ns)

file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

Rendering the Values of a List

:: [Int] -> [String]

[]

show'n : showList ns

Squaring the values of a list

-- >>> sqgrlList [1, 2, 3]

-- 1, 4, 9
sqrList
sqrList []

sqrList (n:ns)

:: [Int] -> [Int]

[]

n"2

sqrList ns

11/10/20,9:19 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

Common Pattern: MAp over a list

Refactor iteration into mapList

mapList :: (a -> b) -> [a] -> [b]
mapList f [] =[]
mapList (f (x:xs) =f x : mapList f xs

Reuse map toimplement inc and sqr

map (\n -> show n) xs

showList xs

map (\n ->n 2~ 2) xs

sqrList xs

Trees

Same “pattern” occurs in other structures!

3of21 11/10/20,9:19 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

data Tree a
= Leaf
| Node a (Tree a) (Tree a)

Incrementing the values of a Tree

-- >>> showTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
-- (Node "2" (Node "1" Leaf Leaf) (Node "3" Leaf Leaf))

showTree :: Tree Int -> Tree String

showTree Leaf = ?22?
?22?

showTree (Node v 1 r)

Squaring the values of a Tree

4 of 21 11/10/20,9:19 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

-- >>> sqrTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
-- (Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

sqriree :: Tree Int -> Tree Int
sqrTree Leaf = 222
= 277

sqrTree (Node v 1 r)

QUIZ: map over a Tree

Refactor iteration into mapTree ! What should the type of mapTree be?

mapTree :: ?72?

showTree t = mapTree (\n -> show n) t

sqrTree t = mapTree (\n ->n ~ 2) t

{- A -} (Int -> Int) -> Tree Int -> Tree Int

- B -} (Int -> String) -> Tree Int -> Tree String
{- C -} (Int -> a) -> Tree Int -> Tree a

{- D -} (a ->/a) -> Tree.a -> Tree a

{- E -} (a -> b) -> Tree a_ -> Iree b

5of 21 11/10/20,9:19 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

Lets write map I ree

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f Leaf = ?27?
mapTree f (Node v 1 r) = 22?2

QUIZ

Wait ... there is a common pattern across two datatypes

. € 7 .
mapList :: (a ->b) -> Lige a ->Jggr b -- List
mapTree :: (a -> b) ->_Jg@® a ->_Igea b -- Tree

€ €

Lets make a class for it!

6 of 21

11/10/20,9:19 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

class Mappable t where

gnap :: Wk (o> b)) ot o — t b
What type should we give to gmap ?

-} (b ->a) ->tb -> t a
-} (a ->Qa) ->t a -> t a
-} (@ -> b) -> [a] -> [b]
-} (a ->b) ->ta ->tb
-} (a ->b) -> Tree a -> Tree b

T B N
m o N ® >

Reuse Iteration Across Types
Haskell’s libraries use the name Functor instead of Mappable

instance Functor [] where
fmap = mapList

instance Functor Tree where
fmap = mapTree

And now we can do

7 of 21 11/10/20,9:19 AM

