
Functors and Monads

Abstracting Code Patterns
a.k.a. Dont Repeat Yourself

Lists

data List a

= []

| (:) a (List a)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

1 of 21 11/10/20, 9:19 AM

NIL

cows

Rendering the Values of a List

-- >>> incList [1, 2, 3]

-- ["1", "2", "3"]

showList :: [Int] -> [String]

showList [] = []

showList (n:ns) = show n : showList ns

Squaring the values of a list

-- >>> sqrList [1, 2, 3]

-- 1, 4, 9

sqrList :: [Int] -> [Int]

sqrList [] = []

sqrList (n:ns) = n^2 : sqrList ns

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

2 of 21 11/10/20, 9:19 AM

SLOW

Common Pattern: map over a list
Refactor iteration into mapList

mapList :: (a -> b) -> [a] -> [b]

mapList f [] = []

mapList f (x:xs) = f x : mapList f xs

Reuse map to implement inc and sqr

showList xs = map (\n -> show n) xs

sqrList xs = map (\n -> n ^ 2) xs

Trees
Same “pattern” occurs in other structures!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

3 of 21 11/10/20, 9:19 AM

5

data Tree a

= Leaf

| Node a (Tree a) (Tree a)

Incrementing the values of a Tree

-- >>> showTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))

-- (Node "2" (Node "1" Leaf Leaf) (Node "3" Leaf Leaf))

showTree :: Tree Int -> Tree String

showTree Leaf = ???

showTree (Node v l r) = ???

Squaring the values of a Tree

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

4 of 21 11/10/20, 9:19 AM

-- >>> sqrTree (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))

-- (Node 4 (Node 1 Leaf Leaf) (Node 9 Leaf Leaf))

sqrTree :: Tree Int -> Tree Int

sqrTree Leaf = ???

sqrTree (Node v l r) = ???

QUIZ: map over a Tree
Refactor iteration into mapTree ! What should the type of mapTree be?

mapTree :: ???

showTree t = mapTree (\n -> show n) t

sqrTree t = mapTree (\n -> n ^ 2) t

{- A -} (Int -> Int) -> Tree Int -> Tree Int

{- B -} (Int -> String) -> Tree Int -> Tree String

{- C -} (Int -> a) -> Tree Int -> Tree a

{- D -} (a -> a) -> Tree a -> Tree a

{- E -} (a -> b) -> Tree a -> Tree b

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

5 of 21 11/10/20, 9:19 AM

show tree Tree Int Tree String

a

or If

Lets write mapTree
mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f Leaf = ???

mapTree f (Node v l r) = ???

QUIZ
Wait … there is a common pattern across two datatypes

mapList :: (a -> b) -> List a -> List b -- List

mapTree :: (a -> b) -> Tree a -> Tree b -- Tree

Lets make a class for it!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

6 of 21 11/10/20, 9:19 AM

E E
M m
t t

class Mappable t where

 gmap :: ???

What type should we give to gmap ?

{- A -} (b -> a) -> t b -> t a

{- B -} (a -> a) -> t a -> t a

{- C -} (a -> b) -> [a] -> [b]

{- D -} (a -> b) -> t a -> t b

{- E -} (a -> b) -> Tree a -> Tree b

Reuse Iteration Across Types
Haskell’s libraries use the name Functor instead of Mappable

instance Functor [] where

fmap = mapList

instance Functor Tree where

fmap = mapTree

And now we can do

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/09-monads.html

7 of 21 11/10/20, 9:19 AM

a b ta tb

