
Imperative Programming with The
State Monad

A Tree Datatype
A tree with data at the leaves

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

1 of 35 11/17/20, 9:29 AM

aa
i

data Tree a

= Leaf a

| Node (Tree a) (Tree a)

deriving (Eq, Show)

Here’s an example Tree Char

charT :: Tree Char

charT = Node

 (Node

 (Leaf 'a')

 (Leaf 'b'))

 (Node

 (Leaf 'c')

 (Leaf 'a'))

Lets Work it Out!
Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)

label = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

2 of 35 11/17/20, 9:29 AM

label :: Tree a -> Tree (a, Int)

label t = t'

where

 (_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))

helper n (Node l r) = (n'', Node l' r')

where

 (n', l') = helper n l

 (n'', r') = helper n' r

EXERCISE
Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c')

(Leaf 'a')))

 (Node

 (Node (Leaf ('a', 0)) (Leaf ('b', 0)))

 (Node (Leaf ('c', 0)) (Leaf ('a', 1))))

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

4 of 35 11/17/20, 9:29 AM

coldwwut newcount outputtree

n
O n r

L r

That is, a separate counter for each key a , b , c etc.

HINT Use the following Map k v type

-- | The empty Map

empty :: Map k v

-- | 'insert key val m` returns a new map that extends 'm'

-- by setting `key` to `val`

insert :: k -> v -> Map k v -> Map k v

-- | 'findWithDefault def key m' returns the value of `key`

-- in `m` or `def` if `key` is not defined

findWithDefault :: v -> k -> Map k v -> v

Common Pattern?
Both the functions have a common “shape”

OldInt -> (NewInt, NewTree)

OldMap -> (NewMap, NewTree)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

5 of 35 11/17/20, 9:29 AM

f I I

helper

keyhelp

If we generally think of Int and Map Char Int as global state

OldState -> (NewState, NewVal)

State Transformers
Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...

2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

takes as input an old s :: State

returns as output a new s' :: State and value v :: a

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

6 of 35 11/17/20, 9:29 AM

O EYE

oldglobal
newtupdglobalTHesu.lt

Executing Transformers
Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a

evalState = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

7 of 35 11/17/20, 9:29 AM

v

1

i state
us

evalstate s Stef snd f s
result

p t m

SIE SIates slate

key portal key

QUIZ
What is the value of quiz ?

st :: St [Int]

st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalState 100 st

A. 103

B. [100, 101, 102]

C. (103, [100, 101, 102])

D. [0, 1, 2]

E. Type error

Lets Make State Transformer a Monad!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

8 of 35 11/17/20, 9:29 AM

SENT 100 LOL LOL
State Starts Int

suggestions cats'sS
2 too fine

e

instance Monad ST where

 return :: a -> ST a

return = returnST

 (>>=) :: ST a -> (a -> ST b) -> ST b

 (>>=) = bindST

EXERCISE: Implement returnST !
What is a valid implementation of returnST ?

type State = Int

data ST a = STC (State -> (State, a))

returnST :: a -> ST a

returnST = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

9 of 35 11/17/20, 9:29 AM

Monad m

return a me a

a Cs m asca.imb nib

returns v STC is G vs
T T
old new

What is returnST doing ?
returnST v is a state transformer that … ???

(Can someone suggest an explanation in English?)

HELP
Now, lets implement bindST !

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

10 of 35 11/17/20, 9:29 AM

type State = Int

data ST a = STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b

bindST = ???

What is bindST doing ?
bindST v is a state transformer that … ???

(Can someone suggest an explanation in English?)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

11 of 35 11/17/20, 9:29 AM

bindST lets us sequence state transformers
(>>=) :: ST0 a -> (a -> ST0 b) -> ST0 b

sta >>= f = STC (\s ->

let (s', va) = runState sta s

 stb = f va

 (s'', vb) = runState stb s'

in

 (s'', vb)

)

st >>= f

1. Applies transformer st to an initial state s

to get output s' and value va

2. Then applies function f to the resulting value va

to get a second transformer

3. The second transformer is applied to s'

to get final s'' and value vb

OVERALL: Transform s to s'' and produce value vb

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

12 of 35 11/17/20, 9:29 AM

qq.IT

a

b

Lets Implement a Global Counter
The (counter) State is an Int

type State = Int

A function that increments the counter to return the next Int .

next :: ST String

next = STC (\s -> (s+1, show s))

next is a state transformer that that returns String values

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

13 of 35 11/17/20, 9:29 AM

Eison

final s

Fa IF ST b

QUIZ
Recall that

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

What does quiz evaluate to?

quiz = evalState 100 next

A. "100"

B. "101"

C. "0"

D. "1"

E. (101, "100")

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

14 of 35 11/17/20, 9:29 AM

string

O

QUIZ
Recall the definitions

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

Now suppose we have

wtf1 = ST Int

wtf1 = next >>= \n ->

return n

What does quiz evaluate to?

quiz = evalState 100 wtf1

A. 100

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

15 of 35 11/17/20, 9:29 AM

m1nextss
tsn.IrdumqTfs.o.o

B. 101

C. 0

D. 1

E. (101, 100)

Example

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

16 of 35 11/17/20, 9:29 AM

Example

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

17 of 35 11/17/20, 9:29 AM

QUIZ
Consider a function wtf2 defined as

wtf2 = next >>= \n1 ->

 next >>= \n2 ->

 next >>= \n3 ->

return [n1, n2, n3]

What does quiz evaluate to?

quiz = evalState 100 wtf

A. Type Error!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

18 of 35 11/17/20, 9:29 AM

100 lol too

q1
D

returndoes
notcharge
state

