cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Imperative Programming with The
State Monad

clss Monad m where /\

yeturn. 1 a — "M @

(»=) & Mma s/as mb) > m b

)

A Tree Datatype

A tree with data at the leaves

1 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

data Tree a
= Leaf a
| Node (Tree a) (Tree a)
deriving (Eq, Show)

Here’s an example Tree Char

charT :: Tree Char

charT = Node
(Node
(Leaf 'a')
(Leaf 'b'))
(Node
(Leaf 'c')
(Leaf 'a'))

Lets Work it Out!

Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)
label = ???

2 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

label :: Tree a -> Tree (a, Int)
label t = t'
where
(_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))
(n+1, Leaf (x, n))
(n""y Node 1' r'")

helper n (Leaf x)
helper n (Node 1 r)

where
(n', 1") = helper n 1
(n'', r") = helper n' r

EXERCISE

Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c')
(Leaf 'a')))
(Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1))))

4 of 35 11/17/20, 9:29 AM

cse230

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

That is, a separate counter for each key a, b, c etc.

HINT Use the following Map k v type

-- | The empty Map
empty :: Map k v

-- | 'insert key val m' returns a new map that extends 'm'
-- by setting ‘key to ‘val’
insert :: k ->v ->Map kv -> Map k v

-- | 'findWithDefault def key m' returns the value of ‘key’

-- in 'm° or ‘def’ if ‘key' is not defined
findWithDefault :: v -> k -> Map k v -> v

Common Pattern?

Both the functions have a common “shape”

0ldInt -> (NewInt, NewTree)

OldMap,/-> (NewMap, NewTree)

5of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

If we generally think of /Int)and Map Char Int/as global state

OldState -> (NewState, NewVal)

State Transformers

Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...
2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

e takesasinputanold s :: State
e returns asoutputanew s' :: State andvalue v :: a

(1 v

6 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

D>

L s’

Executing Transformers

Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a
evalState = ?7??

Shti Stafe— (Satt|a)

7 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

What is the value of quiz ?

st :: §F|[Int] 60 (0L (02—
st = STC (\n -> (n+3, [n, n+1, n+2])) &‘a]ya ST [’m’j"’[[”ﬂ

\/\/‘\/

£
quiz = evalState 100 st
£ ewlode 5 (STC £ :S”d[f;g,)
A — z ~
2 'B.[100, 101, 102] lg)/ 0_’,‘"---)

E. Type error

Lets Make State Transformer a Monad!

8 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

instance Monad ST where Monad o
return :: a -> ST a clum: o= MM o
return = returnST (=) * m@.,(a_.,mé)-)mL
—— — - 7

(>>=) :: STa->(a->STb) ->SThb
(>>=) = bindST

EXERCISE: Implement returnST!

What is a valid implementation of returnST?

Int
STC (State -> (State, a))

type State
data ST a

returnST :: a -> ST a
returnST = ?22?

refumST v = STC [\s — (5, v))
T A

old. 2

9 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

What is returnST doing ?

returnST v is a state transformer that ... 7?27

(Can someone suggest an explanation in English?)

HELP

Now, lets implement bindST!

10 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Int

type State

data ST a

STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) ->STb
bindST = 22?

What is b1ndST doing ?

bindST v is astate transformer that ... 2¢?

(Can someone suggest an explanation in English?)

11 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

bindST lets us sequence state transformers

(>>=) :: STO a -> (a -> STO b) ->
sta >>= f = STC (\s ->

let ,‘ = runState sta s
\ stb) = f vd
—
@ = runState! stb 5.15

?

in

(s'', vb)

st >>= f

1. Applies transformer st to an initial state s
o to getoutput s' and value va

2. Then applies function f to the resulting value va
o to get a second transformer

3. The second transformer is applied to s'

o togetfinal s'' and value vb

OVERALL: Transform s to s'' and produce value vb

\ “b

12 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

ea = (\va — eb)

St~ v nal s
(Ta, =5 (a=STb) — STb

Lets Implement a Global Counter
The (counter) State isan Int

type State = Int

A function that increments the counter to return the next Int.

next :: ST String
next = STC (\s -> (s+1, show s))

next is astate transformer that that returns String values

13 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

Recall that

-

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String STRIN (G-
next = STC (\s -> (s+1, show s))
~— R

"

—_—
What does quiz evaluate to?

quiz = evalStatenext
/A, "100"

B. "101"
C. ll@ll
D, |I1l|

14 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

Recall the definitions

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String
next = STC (\s -> (s+1, show s))

Now suppose we have
g(‘ﬁ\’_—)
wtfl = ST@ ‘
wtfl = next >>= \n -> Y')@)c-l- >SS = C\h — P@"LN’YI ﬂ>
return n -
S % 50 SO0 S 000
What does quiz evaluate to? ghow S /!\
[EEE;—= evalState 100 wtfli] _;TM'
\n -
—_— ﬂe)d’ I retuin v _—
A. 100 S#i
= S+l
-
15 of 35 11/17/20,9:29 AM

(060 (o

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

B. 101
C. 0

D. 1

pumn

Example

next :: STO String
next = STOC (\s — (s+1, show s))

wtf :: STO [String]
wtf next = (\v — return [v])

evalState wtf 1

quiz
[“1"]

_ Wan T

16 of 35 11/17/20, 9:29 AM

cse230

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

v = 1
Y ‘ Y
———| next \v = return [v]
1 / 2 /
Example
next STO String
next = STOC (\s — (s+1, show s))
wtf STO [String]
wtf = next »= (\vl = next »= (\v2 — return [vl, v2]))
quiz = evalState wtf 1

17 of 35

[“1" , “2"]

vl

>l

“1"

V2 - “2"
A

T

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

——p] next 4>[\v2—>next—>[\v2—>return [vl,v2] - >
1 3 3

\N2—>

refun[w.v2)|

QUIZ

Consider a function wtf2 defined as

wtf2 = next >>= \nl1l ->
next >>= \n2 ->
next >>= \n3 ->
return [n1, n2, n3]

What does quiz evaluate to?
quiz = evalState 100 wtf

A. Type Error!

18 of 35 11/17/20, 9:29 AM

