
Imperative Programming with The
State Monad

A Tree Datatype
A tree with data at the leaves

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

1 of 35 11/17/20, 9:29 AM

aa
i

data Tree a

= Leaf a

| Node (Tree a) (Tree a)

deriving (Eq, Show)

Here’s an example Tree Char

charT :: Tree Char

charT = Node

 (Node

 (Leaf 'a')

 (Leaf 'b'))

 (Node

 (Leaf 'c')

 (Leaf 'a'))

Lets Work it Out!
Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)

label = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

2 of 35 11/17/20, 9:29 AM

such that

>>> label charT

Node

 (Node

 (Leaf ('a', 0))

 (Leaf ('b', 1)))

 (Node

 (Leaf ('c', 2))

 (Leaf ('a', 3)))

Labeling a Tree

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

3 of 35 11/17/20, 9:29 AM

o r n

Is

a

label :: Tree a -> Tree (a, Int)

label t = t'

where

 (_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))

helper n (Node l r) = (n'', Node l' r')

where

 (n', l') = helper n l

 (n'', r') = helper n' r

EXERCISE
Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c')

(Leaf 'a')))

 (Node

 (Node (Leaf ('a', 0)) (Leaf ('b', 0)))

 (Node (Leaf ('c', 0)) (Leaf ('a', 1))))

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

4 of 35 11/17/20, 9:29 AM

coldwun
t
newcount outputtree

n
O n r

L r

That is, a separate counter for each key a , b , c etc.

HINT Use the following Map k v type

-- | The empty Map

empty :: Map k v

-- | 'insert key val m` returns a new map that extends 'm'

-- by setting `key` to `val`

insert :: k -> v -> Map k v -> Map k v

-- | 'findWithDefault def key m' returns the value of `key`

-- in `m` or `def` if `key` is not defined

findWithDefault :: v -> k -> Map k v -> v

Common Pattern?
Both the functions have a common “shape”

OldInt -> (NewInt, NewTree)

OldMap -> (NewMap, NewTree)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

5 of 35 11/17/20, 9:29 AM

f I I

helper

keyhelp

If we generally think of Int and Map Char Int as global state

OldState -> (NewState, NewVal)

State Transformers
Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...

2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

takes as input an old s :: State

returns as output a new s' :: State and value v :: a

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

6 of 35 11/17/20, 9:29 AM

O EYE

oldglobal
newtupdglobalTHesu.lt

Executing Transformers
Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a

evalState = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

7 of 35 11/17/20, 9:29 AM

v

i state
us

evalstate s Stef snd f s
result

p t

sty
statues slate

key portal key

QUIZ
What is the value of quiz ?

st :: St [Int]

st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalState 100 st

A. 103

B. [100, 101, 102]

C. (103, [100, 101, 102])

D. [0, 1, 2]

E. Type error

Lets Make State Transformer a Monad!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

8 of 35 11/17/20, 9:29 AM

ITV 100 LOL LOL
State Starts Int

su p cates's

2 too fine

instance Monad ST where

 return :: a -> ST a

return = returnST

 (>>=) :: ST a -> (a -> ST b) -> ST b

 (>>=) = bindST

EXERCISE: Implement returnST !
What is a valid implementation of returnST ?

type State = Int

data ST a = STC (State -> (State, a))

returnST :: a -> ST a

returnST = ???

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

9 of 35 11/17/20, 9:29 AM

Monad m

return a me a

a Cs m asca.imb nib

returns v STC is G vs
T T
old new

What is returnST doing ?
returnST v is a state transformer that … ???

(Can someone suggest an explanation in English?)

HELP
Now, lets implement bindST !

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

10 of 35 11/17/20, 9:29 AM

type State = Int

data ST a = STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b

bindST = ???

What is bindST doing ?
bindST v is a state transformer that … ???

(Can someone suggest an explanation in English?)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

11 of 35 11/17/20, 9:29 AM

bindST lets us sequence state transformers
(>>=) :: ST0 a -> (a -> ST0 b) -> ST0 b

sta >>= f = STC (\s ->

let (s', va) = runState sta s

 stb = f va

 (s'', vb) = runState stb s'

in

 (s'', vb)

)

st >>= f

1. Applies transformer st to an initial state s

to get output s' and value va

2. Then applies function f to the resulting value va

to get a second transformer

3. The second transformer is applied to s'

to get final s'' and value vb

OVERALL: Transform s to s'' and produce value vb

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

12 of 35 11/17/20, 9:29 AM

qq.IT

a

b

Lets Implement a Global Counter
The (counter) State is an Int

type State = Int

A function that increments the counter to return the next Int .

next :: ST String

next = STC (\s -> (s+1, show s))

next is a state transformer that that returns String values

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

13 of 35 11/17/20, 9:29 AM

Eison

final s

Fa IF ST b

QUIZ
Recall that

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

What does quiz evaluate to?

quiz = evalState 100 next

A. "100"

B. "101"

C. "0"

D. "1"

E. (101, "100")

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

14 of 35 11/17/20, 9:29 AM

string

O

QUIZ
Recall the definitions

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

Now suppose we have

wtf1 = ST Int

wtf1 = next >>= \n ->

return n

What does quiz evaluate to?

quiz = evalState 100 wtf1

A. 100

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

15 of 35 11/17/20, 9:29 AM

mfnextss
tsn.IrdumqTfs.o.o

i i

B. 101

C. 0

D. 1

E. (101, 100)

Example

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

16 of 35 11/17/20, 9:29 AM

Example

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

17 of 35 11/17/20, 9:29 AM

QUIZ
Consider a function wtf2 defined as

wtf2 = next >>= \n1 ->

 next >>= \n2 ->

 next >>= \n3 ->

return [n1, n2, n3]

What does quiz evaluate to?

quiz = evalState 100 wtf

A. Type Error!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

18 of 35 11/17/20, 9:29 AM

in
in

returndoes
notcharge
state

data St a STC state a state

14

B. [100, 100, 100]

C. [0, 0, 0]

D. [100, 101, 102]

E. [102, 102, 102]

Chaining Transformers
>>= lets us chain transformers into one big transformer!

So we can define a function to increment the counter by 3

-- Increment the counter by 3

next3 :: ST [Int]

next3 = next >>= \n1 ->

 next >>= \n2 ->

 next >>= \n3 ->

return [n1,n2,n3]

And then sequence it twice to get

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

19 of 35 11/17/20, 9:29 AM

100
101 102

iris
100 101 102 103

f
value

oldstute Fewstate

so s
show 53 50 3

S1 S2 shows

Sz S3 0
showS2

S3 S3
So S SI

t3fex TSot3

next6 :: ST [Int]

next6 = next3 >>= \ns_1_2_3 ->

 next3 >>= \ns_4_5_6 ->

return (ns_123 ++ ns_4_5_6)

Lets do the above examples
Remember, do is just nice syntax for the above!

-- Increment the counter by 3

next3 :: ST [Int, Int]

next3 = do

 n1 <- next

 n2 <- next

 n3 <- next

return [n1,n2,n3]

And then sequence it twice to get

next6 :: ST [Int]

next6 = do

 ns_123 <- next3

 ns_456 <- next3

return (ns_123 ++ ns_4_5_6)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

20 of 35 11/17/20, 9:29 AM

r T
so

SoSoHSoto EstoSothSot5

so fnext3IEJnext3Fot3

Labeling a Tree with a “Global Counter”
Lets rewrite our Tree labeler with ST

helperS :: Tree a -> ST (Tree (a, Int))

helperS = ???

Wow, compare to the old code!

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

21 of 35 11/17/20, 9:29 AM

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))

helper n (Node l r) = (n'', Node l' r')

where

 (n', l') = helper n l

 (n'', r') = helper n' r

Avoid worrying about propagating the “right” counters

Automatically handled by ST monad instance!

Executing the Transformer
In the old code we called the helper with an initial counter 0

label :: Tree a -> Tree (a, Int)

label t = t'

where

 (_, t') = helper 0 t

In the new code what should we do?

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

22 of 35 11/17/20, 9:29 AM

helperS :: Tree a -> ST (Tree (a, Int))

helperS = ...

labelS :: Tree a -> Tree (a, Int)

labelS = ???

Now, we should be able to exec the labelS transformer

>>> labelS (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))

(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)))

How to implement keyLabel ?
So far, we hardwired an Int counter as our State

type State = Int

data ST a = STC (State -> (State, a))

Have to reimplement the monad if we want a di!erent state?

e.g. Map Char Int to implement keyLabel

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

23 of 35 11/17/20, 9:29 AM

Don’t Repeat Yourself!

A Generic State Transformer
Don’t have separate types for IntList and CharList

Define a generic list [a] where a is a type parameter

Instantiate a to get [Int] and [Char]

Similarly, reuse ST with a type parameter!

data ST s a = STC (s -> (s, a))

State is represented by type s

Return Value is the type a (as before).

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

24 of 35 11/17/20, 9:29 AM

A Generic State Transformer Monad
Lets make the above a(n instance of) Monad

instance Monad (ST s) where

-- return :: a -> ST s a

return val = ST0C (\s -> (s, val))

-- (>>=) :: ST s a -> (a -> ST s b) -> ST s b

 (>>=) sta f = ST0C (\s ->

let (s', va) = runState sta s

 stb = f va

 (s'', vb) = runState stb s'

in

 (s'', vb)

)

runState :: ST s a -> s -> (s, a)

runState (STC f) s = f s

evalState :: ST s a -> s -> a

evalState st s = snd (runState st s)

(exactly the same code as returnST and bindST)

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

25 of 35 11/17/20, 9:29 AM

Lets implement keyLabel
1. Define a Map Char Int state-transformer

type CharST a = ST (Map Char Int) a

2. Modify next to take a Char

charNext :: Char -> CharST Int

charNext c = STC (\m ->

let

 n = M.findWithDefault 0 c m -- label for 'c'

 m' = M.insert c (n+1) m -- update map

in

 (m', n)

)

3. Modify helper to use charNext

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

26 of 35 11/17/20, 9:29 AM

keyHelperS :: Tree Char -> ST (Tree (Char, Int))

keyHelperS (Leaf c) = do

 n <- charNext c

return (Leaf (c, n))

keyHelperS (Node l r) = do

 l' <- keyHelperS l

 r' <- keyHelperS r

return (Tree l' r')

keyLabelS :: Tree Char -> Tree (Char, Int)

keyLabelS t = evalState (keyHelperS t) empty

Lets make sure it works!

>>> keyLabelS charT

Node

 (Node (Leaf ('a', 0)) (Leaf ('b', 0)))

 (Node (Leaf ('c', 0)) (Leaf ('a', 1)))

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

27 of 35 11/17/20, 9:29 AM

Lets look at the final “state”
>>> (final, t) = runState (keyHelper charT) M.empty

The returned Tree is

>>> t

Node

 (Node (Leaf ('a', 0)) (Leaf ('b', 0)))

 (Node (Leaf ('c', 0)) (Leaf ('a', 1)))

and the final State is

>>> final

fromList [('a',2),('b',1),('c',1)]

Generically Getting and Setting State
As State is “generic”

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

28 of 35 11/17/20, 9:29 AM

T

STC get
set

St s a

Fan be lat Mapl

i.e. a type variable not Int or Map Char Int or …

It will be convenient to have “generic” get and put functions

that read and update the state

-- | `get` leaves state unchanged & returns it as value

get :: ST s s

-- | `set s` changes the state to `s` & returns () as a value

put :: s -> ST s ()

EXERCISE
Can you fill in the implementations of get and set ?

HINT Just follow the types…

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

29 of 35 11/17/20, 9:29 AM

set A
new state transform

-- | `get` leaves state unchanged & returns it as value

get :: ST s s

get = STC (\oldState -> ???)

-- | `put s` changes the state to `s` & returns () as a value

put :: s -> ST s ()

put s = STC (\oldState -> ???)

Using get and put : Global Counter
We can now implement the plain global counter next as

next :: ST Int Int

next = do

 n <- get -- save the current counter as 'n'

 put (n+1) -- update the counter to 'n+1'

return n -- return the old counter

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

30 of 35 11/17/20, 9:29 AM

Using get and put : Frequency Map
Lets implement the char-frequency counter charNext as

charNext :: Char -> ST (Map Char Int) Int

charNext c = do

 m <- get -- get current freq-map

let n = M.findWithDefault 0 c m -- current freq for c (or 0)

 put (M.insert c (n+1) m) -- update freq for c

return n -- return current as value

A State-Transformer Library

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

31 of 35 11/17/20, 9:29 AM

do layer
y nextlayer x

foolad

The Control.Monad.State module (http://hackage.haskell.org/packages

/archive/mtl/latest/doc/html/Control-Monad-State-Lazy.html#g:2)

defines a State-Transformer like above.

hides the implementation of the transformer

Clients can only use the “public” API

-- | Like 'ST s a' but "private", cannot be directly accessed

data State s a

-- | Like the synonyms described above

get :: State s s

put :: s -> State s ()

runState :: State s a -> s -> (a, s)

evalState :: State s a -> s -> a

Your homework will give you practice with using these

to do imperative functional programming

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

32 of 35 11/17/20, 9:29 AM

D
and f
m

f onFinish res

g onfinsh results

evals statement ST C

92193
Promises futuresNsync IS

Erik Meijer 2008

If
Q mofpqdzjrffq.noITFlowforSQL

I

The IO Monad
Remember the IO a or Recipe a type from this lecture (04-haskell-io.html)

Recipes that return a result of type a

But may also perform some input/output

A number of primitives are provided for building IO recipes

-- IO is a monad

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

Basic actions that can be “chained” via >>= etc.

getChar :: IO Char

putChar :: Char -> IO ()

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

33 of 35 11/17/20, 9:29 AM

I
Re

ma mqmn
mb

s

A Recipe to Read a Line from the Keyboard
getLine :: IO String

getLine = do

 x <- getChar

if x == '\n' then

return []

else do

 xs <- getLine

return (x:xs)

IO is a “special case” of the State-Transformer
The internal state is a representation of the state of the world

data World -- machine, files, network, internet ...

type IO a = World -> (World, a)

A Recipe is a function that

takes the current World as its argument

returns a value a and a modified World

The modified World reflects any input/output done by the Recipe

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

34 of 35 11/17/20, 9:29 AM

This is just for understanding, GHC implements IO more e"ciently!

(http://research.microsoft.com/Users/simonpj/papers/marktoberdorf/)

(https://ucsd-cse230.github.io/fa20/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com

/ucsd-progsys/liquidhaskell-blog/).

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

35 of 35 11/17/20, 9:29 AM

