cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Imperative Programming with The
State Monad

clss Monad m where /\

yeturn. 1 a — "M @

(»=) & Mma s/as mb) > m b

)

A Tree Datatype

A tree with data at the leaves

1 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

data Tree a
= Leaf a
| Node (Tree a) (Tree a)
deriving (Eq, Show)

Here’s an example Tree Char

charT :: Tree Char

charT = Node
(Node
(Leaf 'a')
(Leaf 'b'))
(Node
(Leaf 'c')
(Leaf 'a'))

Lets Work it Out!

Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)
label = ???

2 of 35 11/17/20, 9:29 AM

cse230

such that

>>> label charT
Node
(Node
(Leaf ('a', 0))
(Leaf ('b', 1)))
(Node
(Leaf ('c', 2))
(Leaf ('a', 3)))

Labeling a Tree

3 0of 35

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

label :: Tree a -> Tree (a, Int)
label t = t'
where
(_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))
(n+1, Leaf (x, n))
(n""y Node 1' r'")

helper n (Leaf x)
helper n (Node 1 r)

where
(n', 1") = helper n 1
(n'', r") = helper n' r

EXERCISE

Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c')
(Leaf 'a')))
(Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1))))

4 of 35 11/17/20, 9:29 AM

cse230

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

That is, a separate counter for each key a, b, c etc.

HINT Use the following Map k v type

-- | The empty Map
empty :: Map k v

-- | 'insert key val m' returns a new map that extends 'm'
-- by setting ‘key to ‘val’
insert :: k ->v ->Map kv -> Map k v

-- | 'findWithDefault def key m' returns the value of ‘key’

-- in 'm° or ‘def’ if ‘key' is not defined
findWithDefault :: v -> k -> Map k v -> v

Common Pattern?

Both the functions have a common “shape”

0ldInt -> (NewInt, NewTree)

OldMap,/-> (NewMap, NewTree)

5of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

If we generally think of /Int)and Map Char Int/as global state

OldState -> (NewState, NewVal)

State Transformers

Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...
2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

e takesasinputanold s :: State
e returns asoutputanew s' :: State andvalue v :: a

(1 v

6 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

D>

L s’

Executing Transformers

Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a
evalState = ?7??

Shti Stafe— (Satt|a)

7 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

What is the value of quiz ?

st :: §F|[Int] 60 (0L (02—
st = STC (\n -> (n+3, [n, n+1, n+2])) &‘a]ya ST [’m’j"’[[”ﬂ

\/\/‘\/

£
quiz = evalState 100 st
£ ewlode 5 (STC £ :S”d[f;g,)
A — z ~
2 'B.[100, 101, 102] lg)/ 0_’,‘"---)

E. Type error

Lets Make State Transformer a Monad!

8 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

instance Monad ST where Monad o
return :: a -> ST a clum: o= MM o
return = returnST (=) * m@.,(a_.,mé)-)mL
—— — - 7

(>>=) :: STa->(a->STb) ->SThb
(>>=) = bindST

EXERCISE: Implement returnST!

What is a valid implementation of returnST?

Int
STC (State -> (State, a))

type State
data ST a

returnST :: a -> ST a
returnST = ?22?

refumST v = STC [\s — (5, v))
T A

old. 2

9 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

What is returnST doing ?

returnST v is a state transformer that ... 7?27

(Can someone suggest an explanation in English?)

HELP

Now, lets implement bindST!

10 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Int

type State

data ST a

STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) ->STb
bindST = 22?

What is b1ndST doing ?

bindST v is astate transformer that ... 2¢?

(Can someone suggest an explanation in English?)

11 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

bindST lets us sequence state transformers

(>>=) :: STO a -> (a -> STO b) ->
sta >>= f = STC (\s ->

let ,‘ = runState sta s
\ stb) = f vd
—
@ = runState! stb 5.15

?

in

(s'', vb)

st >>= f

1. Applies transformer st to an initial state s
o to getoutput s' and value va

2. Then applies function f to the resulting value va
o to get a second transformer

3. The second transformer is applied to s'

o togetfinal s'' and value vb

OVERALL: Transform s to s'' and produce value vb

\ “b

12 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

ea = (\va — eb)

St~ v nal s
(Ta, =5 (a=STb) — STb

Lets Implement a Global Counter
The (counter) State isan Int

type State = Int

A function that increments the counter to return the next Int.

next :: ST String
next = STC (\s -> (s+1, show s))

next is astate transformer that that returns String values

13 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

Recall that

-

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String STRIN (G-
next = STC (\s -> (s+1, show s))
~— R

"

—_—
What does quiz evaluate to?

quiz = evalStatenext
/A, "100"

B. "101"
C. ll@ll
D, |I1l|

14 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

QUIZ

Recall the definitions

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String
next = STC (\s -> (s+1, show s))

Now suppose we have
g(‘ﬁ\’_—)
wtfl = ST@ ‘
wtfl = next >>= \n -> Y')@)c-l- >SS = C\h — P@"LN’YI ﬂ>
return n -
S % 50 SO0 S 000
What does quiz evaluate to? ghow S /!\
[EEE;—= evalState 100 wtfli] _;TM'
\n -
—_— ﬂe)d’ I retuin v _—
A. 100 S#i
= S+l
-
15 of 35 11/17/20,9:29 AM

(060 (o

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

B. 101
C. 0

D. 1

pumn

Example

next :: STO String
next = STOC (\s — (s+1, show s))

wtf :: STO [String]
wtf next = (\v — return [v])

evalState wtf 1

quiz
[“1"]

_ Wan T

16 of 35 11/17/20, 9:29 AM

cse230

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

v = 1
Y ‘ Y
———| next \v = return [v]
1 / 2 /
Example
next STO String
next = STOC (\s — (s+1, show s))
wtf STO [String]
wtf = next »= (\vl = next »= (\v2 — return [vl, v2]))
quiz = evalState wtf 1

17 of 35

[“1" , “2"]

vl

>l

“1"

V2 - “2"
A

T

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

——>| next 4>[\v2—)next—>[\V2—>retUI‘n [vl,v2] - >
1 3 3

[108,%1"]

\N2—>
refum [V».sz >
) : _~— oz
00

refun, Adbed
not

Qlat!
/

dats. STew = St (state — (@, stake))

QUIZ /\ e

Consider a function wtf2 defined as

wtf2 = next >>= >
next >>= ->
next >>= @ ->

return [n1, n2, n3] Lla'o) (b')(’Z)(a, 3)

What does quiz evaluate to?

quiz = evalSta tf

A. Type Error!

18 of 35 11/17/20, 9:29 AM

cse230

Seee—rotman—

C.[0,0,0]

\ﬂ). [100, 101, 102]

(1]
E.[102,102,102] ' [00

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

wot' “p2"
3"’0") 5 S‘W") 5 ghou) 5

\i w
—>| neyxt _S:;—>| next — - neﬂ' —> Mf‘w’zﬂg

>

00 (o1 0% 03
_J value
—— —
oldstate_ - J new state

Chaining Transformers

>>= lets us chain transformers into one big transformer!

So we can define a function to increment the counter by 3

-- Increment the counter by 3

next3 :: ST [Int] .o *° Sé -/Sof;

next3 =S°nexts'>>= @ ->
) sW“)Q‘
‘next s>= @ ->

2)otd 5%
“next b= \n3 ->
*sreturn [n1,n2,n3] %
—_— Ego) §. . QL-]
And then sequence it twice to get

So

19 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

next6 :: ST [Int]
next6 = next3 ' >>= \ns_1 2 3 ->
next3 >>= \ns_ 4 5 6 ->
return (ns_123 ++ ns_4 5 6)

Lets dO the above examples

Remember, do is just nice syntax for the above!

-- Increment the counter by 3
next3 :: ST [Int, Int]
next3 = do

nl <- next

n2 <- next

n3 <- next

return [n1,n2,n3]

And then sequence it twice to get

next6 :: ST [Int]
next6 = do
ns_123 <- next3
ns_456 <- next3
return (ns_123 ++ ns_4 5 6)

20 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Labeling a Tree with a “Global Counter”

Lets rewrite our Tree labeler with ST

helperS :: Tree a -> ST (Tree (a, Int))
helperS = 2?2

Wow, compare to the old code!

21 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

helper :: Int -> (Int, Tree (a, Int))
(n+1, Leaf (x, n))
(n'', Node 1' r'")

helper n (Leaf x)
helper n (Node 1 r)

where
(n', 1") = helper n 1
(n'', r'") = helper n' r

Avoid worrying about propagating the “right” counters

e Automatically handled by ST monad instance!

Executing the Transformer

In the old code we called the helper with an initial counter 0

label :: Tree a -> Tree (a, Int)
label t = t'
where
(_, t') = helper 0 t

In the new code what should we do?

22 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

helperS :: Tree a -> ST (Tree (a, Int))
helperS = ...

labelS :: Tree a -> Tree (a, Int)
labelS = 22?2

Now, we should be able to exec the labelS transformer

>>> labelS (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))
(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)))

How to implement keyLabe l?

So far, we hardwired an Int counter as our State

Int

type State

data ST a

STC (State -> (State, a))

Have to reimplement the monad if we want a different state?

e e.g. Map Char Int toimplement keyLabel

23 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Don’t Repeat Yourself!

A Generic State Transformer

Don’t have separate types for IntList and CharList
e Define a generic list [a] where a is a type parameter
e Instantiate a toget [Int] and [Char]

Similarly, reuse ST with a type parameter!
data ST s a = STC (s -> (s, Qa))

e State is represented by type s
e Return Value is the type a (as before).

24 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

A Generic State Transformer Monad

Lets make the above a(n instance of) Monad

instance Monad (ST s) where
-- return :: a -> ST s a
return val = STOC (\s -> (s, val))

-- (>>=) :: ST sa ->(a ->STsb) ->STsb
(>>=) sta f = STOC (\s ->

let (s', va) = runState sta s
stb = f va
(s'', vb) = runState stb s'
in
(s'', vb)
)
runState :: STs a ->s -> (s, a)

runState (STC f) s = f s

evalState :: STs a ->s -> a
evalState st s = snd (runState st s)

(exactly the same code as returnST and bindST)

25 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Lets implement KeylL abel

1. Definea Map Char Int state-transformer
type CharST a = ST (Map Char Int) a
2. Modify next totakea Char

charNext :: Char -> CharST Int

charNext ¢ = STC (\m ->
let
n = M.findWithDefault 0 c m -- label for 'c'
m' = M.insert c (n+1) m -- update map
in
(m', n)
)

3. Modify helper touse charNext

26 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

keyHelperS :: Tree Char -> ST (Tree (Char, Int))

keyHelperS (Leaf c) = do
n <- charNext c
return (Leaf (c, n))

keyHelperS (Node 1 r) = do
1' <- keyHelperS 1

r' <- keyHelperS r

return (Tree 1' r')

keyLabelS :: Tree Char -> Tree (Char, Int)
keyLabelS t = evalState (keyHelperS t) empty

Lets make sure it works!

>>> keyLabelS charT

Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1)))

27 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Lets look at the final “state”

>>> (final, t) = runState (keyHelper charT) M.empty
The returned Tree is

>>> t

Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1)))

and the final State is

>>> final
fromList [('a',2),('b',1),('c',1)]

Generically Getting and Setting State

As State is “generic”

28 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

e i.e. atypevariable not Int or Map Char Int or..
It will be convenient to have “generic” get and put functions
e that read and update the state

-- | ‘get’ leaves state unchanged & returns it as value

get :: ST s s

-- | “set s® changes the state to ‘s & returns () as a value

put-:: s -> ST s ()

~

EXERCISE

Can you fill in the implementations of get and set ?

HINT Just follow the types...

29 of 35 11/17/20, 9:29 AM

cse230

file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

-- | ‘get’ leaves state unchanged & returns it as value

get :: ST s s
get = STC (\oldState -> 22?)

-- | ‘put s° changes the state to s’ & returns () as a value

put :: s -> ST s ()
put s = STC (\oldState -> 22??)

Using get and put : Global Counter

We can now implement the plain global counter next as

next :: ST Int Int

next = do
n <- get -- save the current counter as 'n'
put (n+1) -- update the counter to 'n+1'
return n -- return the old counter

30 of 35

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

Using get and put : Frequency Map
Lets implement the char-frequency counter charNext as

charNext :: Char -> ST (Map Char Int) Int
charNext c = do

m <- get -- get current freq-map

let n = M.findWithDefault © ¢ m -- current freq for c (or 0)
put (M.insert c (n+1) m) -- update freq for c

return n -- return current as value

A State-Transformer Library

310f35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

The Control.Monad.State module (http://hackage.haskell.org/packages
/archive/mtl/latest/doc/html/Control-Monad-State-Lazy.html#g:2)

e defines a State-Transformer like above.
¢ hides the implementation of the transformer
Clients can only use the “public” API

-- | Like 'ST s a' but "private”, cannot be directly accessed

data State s a
=

-- | Like the synonyms described above ,d
get :: State s s “
put i1 s -> State s () /\A/L_(f)
runState :: State s a -> s -> (a, s) <r OHFWHS es =
evalState :: State s a ->s -> a 3 Oﬂe\'ﬂ“‘ (m_(u“';)
Your homework will give you practice with using these) T

¢ to do imperative functional programming)

eval§ :: % —> ST _ O
@ Dromiseo (Futuves /Manc 19
Eﬂk MQ(JU % 203 TF‘O(D

LLNQ imomdg DRUAD (LING
A\

C’ﬁ: forSQL.
320f 35 é

42/%3--

11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

The IO Monad

Remember the I0 a or Recipe a type from this lecture (04-haskell-io.html)

e Recipes that return a result of type a
¢ But may also perform some input/output

A number of primitives are provided for building IO recipes

-- I0 is a monad
return :: a -> I0 a
(>>=) ::I0a ->(a ->I0b) ->I0Db

Basic actions that can be “chained” via >>= etc.

getChar :: IO Char
putChar :: Char -> I0 ()

330f 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

A Recipe to Read a Line from the Keyboard

getLine :: IO String
getLine = do
X <- getChar
if x == '\n' then
return []
else do
xs <- getlLine
return (Xx:xs)

10 is a “special case” of the State- Transformer

The internal state is a representation of the state of the world

data World -- machine, files, network, internet ...

type I0 a = World -> (World, a)

A Recipe is afunction that

e takes the current World asits argument
e returns a value a and a modified World

The modified World reflects any input/output done by the Recipe

34 of 35 11/17/20, 9:29 AM

cse230 file:///Users/rjhala/teaching/230-fa20/_site/lectures/11-state.html

This is just for understanding, GHC implements I0 more efficiently!
(http://research.microsoft.com/Users/simonpj/papers/marktoberdorf/)

(https://ucsd-cse230.github.io/fa20/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469)
(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher
(http://lucumr.pocoo.org), suggest improvements here (https://github.com
Jucsd-progsys/liquidhaskell-blog/).

350f35 11/17/20, 9:29 AM

