cse230

9 of 36

https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

>>> eval (Div (Numer 10) (Plus (Number 5) (Number (-5))))

Left (Minus (Number 5) (Number 5))

No further evaluation happens after a throw because ???

catching an exception

How to catch an exception?

Lets change our Expr type to

data Expr
= Number Int -- 10,1,2,3,4
| Plus Expr Expr -- Nel + e2
| Try Expr Int

deriving (Show)

Informally, try e n evaluatesto e but

12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Implementing catch

Lets implement the catch function!

catch :: Either e a -> (e -> Either e a) -> Either e a
catch (Left e) handler = 2?2
catch (Right a) handler = ?22?

QUIZ

11 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Monads Can Be Used for Many Things!

e Partial Functions v oKceR
e Global State 1/ cou nk

e Parsing

e Exceptions \/

e Test Generation

, (4
\-*
e Concurrency

A Couket

... but what if I want Exceptions and Global State ?

e~—" ———

[

—

e “throw" an enor 1({ DR~
/ Moatch ! ((uoha Pﬁ@
o "Count" opefalv-

Mixing Monads

What if I want Exceptions and Global State ?

14 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Profiling with the ST Monad

Lets implement a profiling monad that counts the number of operations

-- A State-Transformer with a "global"” “Int’ counter
type Profile a = State Int a

We can write a runProfile that

e executes the transformer from 0

e and renders the result

15 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

runProfile :: (Show a) => Profile a -> String
runProfile st = showValCount (runState st 0)

showValCount :: (Show v, Show c) => (v, c) -> String
showValCount (val, count) = "value: "

++ show val ++ ", count:

++ show count
A function to increment the counter

count :: Profile ()

count = do
n <- get
put (n+1)

16 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

A Profiling Evaluator

We can use count to write a profiling evaluator

evalProf :: Expr -> Profile Int

evalProf = eval

where
eval (Number n) return n

eval (Plus el e2)

do n1 <- eval el

n2 <- eval e2

count

return (n1+n2)
do n1 <- eval el

eval (Div el e2)
n2 <- eval e2
count
return (n1 ‘div’ n2)

And now, as there are two operations, we get

17 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

>>> el

Div (Number 10) (Plus (Number 5) (Number 5))

>>> runProfile (evalProf el)
"value: 1, count: 2"

But what about Divide-by-Zero?

Bad things happen...

18 of 36 12/1/20, 9:29 AM

cse230

https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

>>> e?2

Div

>>>

(Number 10) (Plus (Number 5) (Number (-5)))

runProfile (evalProf e2)
Exception: divide by zero

"value:

Problem: How to get global state AND exception handling ?

Mixing Monads with Transformers

Start with a Basic ad

19 of 36

12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

m implements

¢ no special operations

Transform it to add some Capabilities

[Transforml @]

Transforml m implements

e m operations and
e operations added by Transforml

Transform again to add more Capabilities

é Y

Transform?2 [Transforml @]

\ J

Transform2 (Transforml m) implements

e m operations and
e operations added by Transforml and
e operations added by Transform2

... And so on

a4 Y

. « «| Transform2 [Transforml @]

\ S

20 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Transform3 (Transform2 (Transforml m)) implements

m operations and

operations added by Transform1 and

operations added by Transform2 and

operations added by Transform3 ...

Reminiscent of the Decorator Design Pattern (http://oreilly.com/catalog
/hfdesignpat/chapter/cho3.pdf) or Python’s Decorators (http://en.wikipedia.org
/wiki/Python_ syntax_and_ semantics#Decorators).

& ec
d ecomfori

de € @93[- -)

I
(@J\\

Mixink Monads with Trans or

—=

w e Step 1: Specifying Monads with Extra Features

am—

o\@)ep 2: Implementing Monads with Extra Features

v\o‘y -

21 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Specifying Monads with Extra Features

First, instead of using concrete monads ‘
State Eycept “ClasseS " Jave.
e e.g. Profile or Either
We will use type-classes to abstractly specify a monad’s capabilities

]]
e e.g./MonadState s m ¢r MonadError e m lﬂ"é(&w

22 of 36

12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

llln'_e M“
A Class for State- Transformers Monads

The class MonadState s m defined in the Control.Monad.State
(http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-
Except.html) says

e m is a State-Transformer monad with state type s

class Monad m => MonadState s m where
get :: ms
put :: s ->m ()

That is to say, m implements

e >>= and return operations specified by Monad and

e get and put operations specified by MonadState!

Generalize Types to use Classes

So we can generalize the type of count touse MonadState Int m

count :: (MonadState Int m) => m ()

count = do
n <- get
put (n+1)

23 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

A Class for Exception Handling Monads

The class MonadError e m definedin [Control.Monad.Except]J[6] says

e m is a Exception-Handling monad with exception type e

class Monad m => MonadError e m where
throwError :: e -> m a

catchError :: ma -> (e ->ma) ->m a

That is to say, m implements
e >>= and return operations specified by Monad and

e throwError and catchError operations specified by MonadError !

Generalize Types to use Classes
So we can generalize the type of tryCatch touse MonadError e m

tryCatch :: (MonadError em) => ma ->a ->m a
tryCatch m def = catchError m (_ -> return def)

24 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Generalize eval to use Constraints

We can now specify that eval uses amonad m that implements

e MonadState Int and MonadError Expr

25 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

eval :: (MonadState Int m, MonadError Expr m) => Expr -> m Int
eval (Number n) = return n
eval (Plus el e2) = do n1 <- eval el

n2 <- eval e2

count

return (n1 + n2)

eval (Div el e2) = do nl1 <- eval el

n2 <- eval e2

count

if (n2 /= 0)
then return (n1 “div’ n2)
else throwError e2

eval (Try e n) tryCatch (eval e) n
Lets try to run it!

>>> el
>>> evalMix el

. GHC yells "please IMPLEMENT this MAGIC monad that implements B
OTH features”

26 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Mixing Monads with Transformers

e Step 1: Specifying Monads with Extra Features

o Step z: Implementing Monads with Extra Features

Implementing Monads with Extra Features

27 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

——
Transform2 | Transform? @]J

Transform2 (Transforml m) implements

y

\

¢ (moperations and
s~operations added by Transforml and
s=operations added by Transform?2

We require

e A basicmonad m
o A Transformi that adds State capabilities
o A Transform2 that adds Exception capabilities

A Basic Monad

First, lets make a basic monad

28 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

e only implement$ >>=/and return

data Identity a = Id a

instance Monad Identity where
return a = Id a
(Id a) >>=f = f a

A very basic monad: just a wrapper (Id) around the value (a)

e No extra features

A Transform that adds State Capabilities

The transformer StateT s m defined in the Control.Monad.State module
(http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-
Except.html) - takes as input monad m and

e transforms it into a new monad m'

29 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html
such that m' implements
e all the operations that m implements
¢ and adds State-transformer capabilities

StateT s m satisfies the constraint (MonadState s (StateT s m))

A State-transformer over INT states

type Prof = StateT Int Identity

PR R R T) [
- -

StateT |Id

We can go back and give evalProf the type

evalProf :: Expr -> Prof Int

30 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

A Transform that adds Exception
Capabilities
The transformer ExceptT e m

e takes as input a monad m and

e transforms it into a new monad m'
such that m' implements
e all the operations that m implements
¢ and adds Exception-handling capabilities

ExceptT e m satisfies the constraint (MonadError e (ExceptT e m))

An Exception Handler Monad with EXpr-typed
exceptions

type Exn = ExceptT/ Expr, Identity

ExceptT|ig

We can go back and give evalThrowCatch the type

evalThrowCatch :: Expr -> Exn Int

31 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

Composing Transformers

We can use both transformers to get both powers!

type ExnProf a =| ExceptT Expr [StateT Int (Identity)) i3

ExnProf implements State-transformer-over Int and Exception-handling-over-

Expr

32 0f 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

EXERCISE: Executing the Combined
Transformer

Recall that
type ExnProf a = ExceptT Expr (StateT Int (Identity)) a
Lets write a function

runExnProf :: (Show a) => ExnProf a -> String
runExnProf epm = 22?

such that

>>> runExnProf (eval el)
"value: 1, count: 2"

>>> runExnProf (eval e2)
"Plus (Number 5) (Number (-5)) after 2 operations"”

33 of 36 12/1/20, 9:29 AM

cse230

https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

TRY AT HOME: Combining in a Different
Order

We can also combine the transformers in a different order

type ProfExn a = StateT Int (ExceptT Expr (Identity)) a

StateT ExceptT@

ExnProf implements State-transformer-over Int and Exception-handling-over-

Expr

Can you implement the function
runProfExn :: (Show a) => ProfExn a -> String

such that when you are done, we can get the following behavior?

34 of 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

>>> runProfExn (eval el)
"value: 1, count: 2"

>>> runProfExn (eval e2)
"Left (Plus (Number 5) (Number (-5)))"

Summary: Mixing Monads with Many
Features

1. Transformers add capabilities to Monads

a Y
[Y

« « «| Transform2 [Transforml @]

\ S
\ S

Transform2 (Transforml m) implements

e m operations and
e operations added by Transforml and
e operations added by Transform2

35 0f 36 12/1/20, 9:29 AM

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

2. StateT and ExceptT add State and

Exceptions

e Start with a basic monad Identity
e Use StateT Int toadd global- Int state-update capabilities
e Use ExceptT Expr toadd exception-handling capabilities

Play around with this in your homework assignment!

(https://ucsd-cse230.github.io/fa20/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469)
(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher
(http://lucumr.pocoo.org), suggest improvements here (https://github.com
Jucsd-progsys/liquidhaskell-blog/).

36 of 36 12/1/20, 9:29 AM

