
>>> eval (Div (Numer 10) (Plus (Number 5) (Number (-5))))

Left (Minus (Number 5) (Number 5))

No further evaluation happens after a throw because ???

catch ing an exception
How to catch an exception?

Lets change our Expr type to

data Expr

= Number Int -- ^ 0,1,2,3,4

| Plus Expr Expr -- ^ e1 + e2

| Try Expr Int

deriving (Show)

Informally, try e n evaluates to e but

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

9 of 36 12/1/20, 9:29 AM

Implementing catch
Lets implement the catch function!

catch :: Either e a -> (e -> Either e a) -> Either e a

catch (Left e) handler = ???

catch (Right a) handler = ???

QUIZ

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

11 of 36 12/1/20, 9:29 AM

Monads Can Be Used for Many Things!
Partial Functions

Global State

Parsing

Exceptions

Test Generation

Concurrency

…

… but what if I want Exceptions and Global State ?

Mixing Monads
What if I want Exceptions and Global State ?

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

14 of 36 12/1/20, 9:29 AM

OkfERR
count

i

counter

I

throw an error f DBT
catch ifusing Def
count operations

Profiling with the ST Monad
Lets implement a profiling monad that counts the number of operations

-- A State-Transformer with a "global" `Int` counter

type Profile a = State Int a

We can write a runProfile that

executes the transformer from 0

and renders the result

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

15 of 36 12/1/20, 9:29 AM

runProfile :: (Show a) => Profile a -> String

runProfile st = showValCount (runState st 0)

showValCount :: (Show v, Show c) => (v, c) -> String

showValCount (val, count) = "value: " ++ show val ++ ", count: "

++ show count

A function to increment the counter

count :: Profile ()

count = do

 n <- get

 put (n+1)

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

16 of 36 12/1/20, 9:29 AM

A Profiling Evaluator
We can use count to write a profiling evaluator

evalProf :: Expr -> Profile Int

evalProf = eval

where

 eval (Number n) = return n

 eval (Plus e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 count

return (n1+n2)

 eval (Div e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 count

return (n1 `div` n2)

And now, as there are two operations, we get

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

17 of 36 12/1/20, 9:29 AM

>>> e1

Div (Number 10) (Plus (Number 5) (Number 5))

>>> runProfile (evalProf e1)

"value: 1, count: 2"

But what about Divide-by-Zero?
Bad things happen…

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

18 of 36 12/1/20, 9:29 AM

>>> e2

Div (Number 10) (Plus (Number 5) (Number (-5)))

>>> runProfile (evalProf e2)

*** Exception: divide by zero

"value:

Problem: How to get global state AND exception handling ?

Mixing Monads with Transformers

Start with a Basic Monad

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

19 of 36 12/1/20, 9:29 AM
Except

m implements

no special operations

Transform it to add some Capabilities

Transform1 m implements

m operations and

operations added by Transform1

Transform again to add more Capabilities

Transform2 (Transform1 m) implements

m operations and

operations added by Transform1 and

operations added by Transform2

… And so on

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

20 of 36 12/1/20, 9:29 AM

Transform3 (Transform2 (Transform1 m)) implements

m operations and

operations added by Transform1 and

operations added by Transform2 and

operations added by Transform3 …

Reminiscent of the Decorator Design Pattern (http://oreilly.com/catalog

/hfdesignpat/chapter/ch03.pdf) or Python’s Decorators (http://en.wikipedia.org

/wiki/Python_syntax_and_semantics#Decorators).

Mixing Monads with Transformers
Step 1: Specifying Monads with Extra Features

Step 2: Implementing Monads with Extra Features

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

21 of 36 12/1/20, 9:29 AM

aeddeeio2ralorIdeffooC.r

Libraries'T

Specifying Monads with Extra Features
First, instead of using concrete monads

e.g. Profile or Either

We will use type-classes to abstractly specify a monad’s capabilities

e.g. MonadState s m or MonadError e m

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

22 of 36 12/1/20, 9:29 AM

data Haskell
State Except Classes Java

IT Interface

interface for
typeclass

11

A Class for State-Transformers Monads
The class MonadState s m defined in the Control.Monad.State

(http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-

Except.html) says

m is a State-Transformer monad with state type s

class Monad m => MonadState s m where

 get :: m s

 put :: s -> m ()

That is to say, m implements

>>= and return operations specified by Monad and

get and put operations specified by MonadState !

Generalize Types to use Classes
So we can generalize the type of count to use MonadState Int m

count :: (MonadState Int m) => m ()

count = do

 n <- get

 put (n+1)

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

23 of 36 12/1/20, 9:29 AM

Interface

return a ma

D ma

a mb
m b

A Class for Exception Handling Monads
The class MonadError e m defined in [Control.Monad.Except][6] says

m is a Exception-Handling monad with exception type e

class Monad m => MonadError e m where

 throwError :: e -> m a

 catchError :: m a -> (e -> m a) -> m a

That is to say, m implements

>>= and return operations specified by Monad and

throwError and catchError operations specified by MonadError !

Generalize Types to use Classes
So we can generalize the type of tryCatch to use MonadError e m

tryCatch :: (MonadError e m) => m a -> a -> m a

tryCatch m def = catchError m (_ -> return def)

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

24 of 36 12/1/20, 9:29 AM

Generalize eval to use Constraints
We can now specify that eval uses a monad m that implements

MonadState Int and MonadError Expr

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

25 of 36 12/1/20, 9:29 AM

eval :: (MonadState Int m, MonadError Expr m) => Expr -> m Int

eval (Number n) = return n

eval (Plus e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 count

return (n1 + n2)

eval (Div e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 count

if (n2 /= 0)

then return (n1 `div` n2)

else throwError e2

eval (Try e n) = tryCatch (eval e) n

Lets try to run it!

>>> e1

>>> evalMix e1

... GHC yells "please IMPLEMENT this MAGIC monad that implements B

OTH features"

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

26 of 36 12/1/20, 9:29 AM

is it

Mixing Monads with Transformers
Step 1: Specifying Monads with Extra Features

Step 2: Implementing Monads with Extra Features

Implementing Monads with Extra Features

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

27 of 36 12/1/20, 9:29 AM

Transform2 (Transform1 m) implements

m operations and

operations added by Transform1 and

operations added by Transform2

We require

A basic monad m

A Transform1 that adds State capabilities

A Transform2 that adds Exception capabilities

A Basic Monad
First, lets make a basic monad

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

28 of 36 12/1/20, 9:29 AM

O
f
t

return

stat I

only implements >>= and return

data Identity a = Id a

instance Monad Identity where

return a = Id a

 (Id a) >>= f = f a

A very basic monad: just a wrapper (Id) around the value (a)

No extra features

A Transform that adds State Capabilities
The transformer StateT s m defined in the Control.Monad.State module

(http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-

Except.html) - takes as input monad m and

transforms it into a new monad m'

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

29 of 36 12/1/20, 9:29 AM

I
00

Baig

such that m' implements

all the operations that m implements

and adds State-transformer capabilities

StateT s m satisfies the constraint (MonadState s (StateT s m))

A State-transformer over Int states

type Prof = StateT Int Identity

We can go back and give evalProf the type

evalProf :: Expr -> Prof Int

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

30 of 36 12/1/20, 9:29 AM

A Transform that adds Except ion
Capabilities
The transformer ExceptT e m

takes as input a monad m and

transforms it into a new monad m'

such that m' implements

all the operations that m implements

and adds Exception-handling capabilities

ExceptT e m satisfies the constraint (MonadError e (ExceptT e m))

An Exception Handler Monad with Expr -typed
exceptions

type Exn = ExceptT Expr Identity

We can go back and give evalThrowCatch the type

evalThrowCatch :: Expr -> Exn Int

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

31 of 36 12/1/20, 9:29 AM

O

an

as

Basic

5

Composing Transformers
We can use both transformers to get both powers!

type ExnProf a = ExceptT Expr (StateT Int (Identity)) a

ExnProf implements State-transformer-over Int and Exception-handling-over-

Expr

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

32 of 36 12/1/20, 9:29 AM

IDT

EEE

e

EXERCISE: Executing the Combined
Transformer
Recall that

type ExnProf a = ExceptT Expr (StateT Int (Identity)) a

Lets write a function

runExnProf :: (Show a) => ExnProf a -> String

runExnProf epm = ???

such that

>>> runExnProf (eval e1)

"value: 1, count: 2"

>>> runExnProf (eval e2)

"Plus (Number 5) (Number (-5)) after 2 operations"

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

33 of 36 12/1/20, 9:29 AM

TRY AT HOME: Combining in a Different
Order
We can also combine the transformers in a di!erent order

type ProfExn a = StateT Int (ExceptT Expr (Identity)) a

ExnProf implements State-transformer-over Int and Exception-handling-over-

Expr

Can you implement the function

runProfExn :: (Show a) => ProfExn a -> String

such that when you are done, we can get the following behavior?

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

34 of 36 12/1/20, 9:29 AM

make 05 transformalso
FINAL but no collab

separate FINAL

>>> runProfExn (eval e1)

"value: 1, count: 2"

>>> runProfExn (eval e2)

"Left (Plus (Number 5) (Number (-5)))"

Summary: Mixing Monads with Many
Features

1. Transformers add capabilities to Monads

Transform2 (Transform1 m) implements

m operations and

operations added by Transform1 and

operations added by Transform2

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

35 of 36 12/1/20, 9:29 AM

2. StateT and ExceptT add State and
Exceptions

Start with a basic monad Identity

Use StateT Int to add global- Int state-update capabilities

Use ExceptT Expr to add exception-handling capabilities

Play around with this in your homework assignment!

(https://ucsd-cse230.github.io/fa20/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469)

(https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com

/ucsd-progsys/liquidhaskell-blog/).

cse230 https://ucsd-cse230.github.io/fa20/lectures/13-transformers.html

36 of 36 12/1/20, 9:29 AM

y

M

aulograudis

Bst

iii

