
Syntactic Sugar

instead of we write

\x -> (\y -> (\z -> e)) \x -> \y -> \z -> e

\x -> \y -> \z -> e \x y z -> e

(((e1 e2) e3) e4) e1 e2 e3 e4

\x y -> y     -- A function that that takes two arguments

-- and returns the second one...

(\x y -> y) apple banana -- ... applied to two arguments
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Semantics : What Programs Mean

How do I “run” / “execute” a λ-term?

Think of middle-school algebra:
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-- Simplify expression:

  (1 + 2) * ((3 * 8) - 2)

=

3 * ((3 * 8) - 2)

=

3 * ( 24 - 2)

=

3 * 22

=

66

Execute = rewrite step-by-step

• Following simple rules

• until no more rules apply

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

18 of 88 9/23/21, 12:07 PM

t
t
t

lo e e en
value



Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

But first we have to talk about scope

Semantics: Scope of a Variable
The part of a program where a variable is visible
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In the expression \x -> e

• x  is the newly introduced variable

• e  is the scope of x

• any occurrence of x  in \x -> e  is bound (by the binder \x )

For example, x  is bound in:

  \x -> x

  \x -> (\y -> x)

An occurrence of x  in e  is free if it’s not bound by an enclosing abstraction

For example, x  is free in:

  x y                -- no binders at all!  

  \y -> x y          -- no \x binder

  (\x -> \y -> y) x  -- x is outside the scope of the \x binder;

-- intuition: it's not "the same" x
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QUIZ
In the expression (\x -> x) x , is x bound or free?

A. first occurrence is bound, second is bound

B. first occurrence is bound, second is free

C. first occurrence is free, second is bound

D. first occurrence is free, second is free
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EXERCISE: Free Variables
An variable x  is free in e  if there exists a free occurrence of x  in e

We can formally define the set of all free variables in a term like so:

FV(x)       = ???

FV(\x -> e) = ???

FV(e1 e2)   = ???
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Closed Expressions
If e  has no free variables it is said to be closed

• Closed expressions are also called combinators

What is the shortest closed expression?
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Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)
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Semantics: Redex
A redex is a term of the form

  (\x -> e1) e2

A function (\x -> e1)

• x  is the parameter

• e1  is the returned expression

Applied to an argument e2

• e2  is the argument
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Semantics: β-Reduction

A redex b-steps to another term …

  (\x -> e1) e2   =b>   e1[x := e2]

where e1[x := e2]  means

“ e1  with all free occurrences of x  replaced with e2 ”

Computation by search-and-replace:

• If you see an abstraction applied to an argument, take the body of the abstraction

and replace all free occurrences of the formal by that argument

• We say that (\x -> e1) e2 β-steps to e1[x := e2]

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

26 of 88 9/23/21, 12:07 PM

tÉiarg 9

xx ez

D D



Redex Examples

(\x -> x) apple     

=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

27 of 88 9/23/21, 12:07 PM

param x

body I
DD arg ripple

http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc


QUIZ

(\x -> (\y -> y)) apple

=b> ???

A. apple

B. \y -> apple

C. \x -> apple

D. \y -> y

E. \x -> y
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QUIZ

(\x -> y x y x) apple

=b> ???

A. apple apple apple apple

B. y apple y apple

C. y y y y

D. apple
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QUIZ

(\x -> x (\x -> x)) apple

=b> ???

A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x
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EXERCISE
What is a λ-term fill_this_in  such that

fill_this_in apple

=b> banana

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise (https://goto.ucsd.edu

/elsa/index.html#?demo=permalink%2F1585434473_24432.lc)
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A Tricky One

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?
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Something is Fishy

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Problem: The free y  in the argument has been captured by \y  in body!

Solution: Ensure that formals in the body are di!erent from free-variables of

argument!
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Capture-Avoiding Substitution
We have to fix our definition of β-reduction:

  (\x -> e1) e2   =b>   e1[x := e2]

where e1[x := e2]  means “ e1  with all free occurrences of x  replaced with e2 ”

• e1  with all free occurrences of x  replaced with e2

• as long as no free variables of e2  get captured

Formally:
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x[x := e]            = e

y[x := e]            = y                          -- as x /= y

(e1 e2)[x := e]      = (e1[x := e]) (e2[x := e])

(\x -> e1)[x := e]   = \x -> e1                   -- Q: Why leave `e1

` unchanged?

(\y -> e1)[x := e] 

| not (y in FV(e)) = \y -> e1[x := e]

Oops, but what to do if y  is in the free-variables of e ?

• i.e. if \y -> ...  may capture those free variables?
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Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

Semantics: α-Renaming
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  \x -> e   =a>   \y -> e[x := y]

where not (y in FV(e))

• We rename a formal parameter x  to y

• By replace all occurrences of x  in the body with y

• We say that \x -> e α-steps to \y -> e[x := y]

Example:

\x -> x   =a>   \y -> y   =a>    \z -> z

All these expressions are α-equivalent

What’s wrong with these?

-- (A)

\f -> f x    =a>   \x -> x x
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-- (B)

(\x -> \y -> y) y   =a>   (\x -> \z -> z) z

Tricky Example Revisited
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    (\x -> (\y -> x)) y

-- rename 'y' to 'z' to avoid capture

=a> (\x -> (\z -> x)) y

-- now do b-step without capture!

=b> \z -> y

To avoid getting confused,

• you can always rename formals,

• so di"erent variables have di"erent names!
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Normal Forms
Recall redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

QUIZ
Which of the following term are not in normal form ?
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A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D

Semantics: Evaluation
A λ-term e evaluates to e'  if
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1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?>  is either =a>  or =b>  and N >= 0

2. e'  is in normal form

Examples of Evaluation
(\x -> x) apple

=b> apple

(\f -> f (\x -> x)) (\x -> x)

=?> ???
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(\x -> x x) (\x -> x)

=?> ???

Elsa shortcuts
Named λ-terms:

let ID = \x -> x  -- abbreviation for \x -> x

To substitute name with its definition, use a =d>  step:

ID apple

=d> (\x -> x) apple    -- expand definition

=b> apple              -- beta-reduce
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Evaluation:

• e1 =*> e2 : e1  reduces to e2  in 0 or more steps

◦ where each step is =a> , =b> , or =d>

• e1 =~> e2 : e1  evaluates to e2  and e2  is in normal form

EXERCISE
Fill in the definitions of FIRST , SECOND  and THIRD  such that you get the following

behavior in elsa
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let FIRST = fill_this_in

let SECOND = fill_this_in

let THIRD = fill_this_in

eval ex1 :

FIRST apple banana orange

=*> apple 

eval ex2 :

SECOND apple banana orange

=*> banana 

eval ex3 :

THIRD apple banana orange

=*> orange

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise (https://goto.ucsd.edu

/elsa/index.html#?demo=permalink%2F1585434130_24421.lc)

Non-Terminating Evaluation
(\x -> x x) (\x -> x x)

=b> (\x -> x x) (\x -> x x)
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Some programs loop back to themselves…

… and never reduce to a normal form!

This combinator is called Ω

What if we pass Ω as an argument to another function?

let OMEGA = (\x -> x x) (\x -> x x)

(\x -> (\y -> y)) OMEGA

Does this reduce to a normal form? Try it at home!
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Programming in λ-calculus
Real languages have lots of features

• Booleans

• Records (structs, tuples)

• Numbers

• Functions [we got those]

• Recursion

Lets see how to encode all of these features with the λ-calculus.
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