
Syntactic Sugar

instead of we write

\x -> (\y -> (\z -> e)) \x -> \y -> \z -> e

\x -> \y -> \z -> e \x y z -> e

(((e1 e2) e3) e4) e1 e2 e3 e4

\x y -> y -- A function that that takes two arguments

-- and returns the second one...

(\x y -> y) apple banana -- ... applied to two arguments

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

16 of 88 9/23/21, 12:07 PM

Moved deadline to 1018

e 2 y z there e ez

patam result Inc arg

E E D Ey E

It x ly z

x say y apple banana

Semantics : What Programs Mean

How do I “run” / “execute” a λ-term?

Think of middle-school algebra:

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

17 of 88 9/23/21, 12:07 PM

I

redey

18

-- Simplify expression:

 (1 + 2) * ((3 * 8) - 2)

=

3 * ((3 * 8) - 2)

=

3 * (24 - 2)

=

3 * 22

=

66

Execute = rewrite step-by-step

• Following simple rules

• until no more rules apply

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

18 of 88 9/23/21, 12:07 PM

t
t
t

lo e e en
value

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

But first we have to talk about scope

Semantics: Scope of a Variable
The part of a program where a variable is visible

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

19 of 88 9/23/21, 12:07 PM

global
lx I Y E

O

In the expression \x -> e

• x is the newly introduced variable

• e is the scope of x

• any occurrence of x in \x -> e is bound (by the binder \x)

For example, x is bound in:

 \x -> x

 \x -> (\y -> x)

An occurrence of x in e is free if it’s not bound by an enclosing abstraction

For example, x is free in:

 x y -- no binders at all!

 \y -> x y -- no \x binder

 (\x -> \y -> y) x -- x is outside the scope of the \x binder;

-- intuition: it's not "the same" x

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

20 of 88 9/23/21, 12:07 PM

x

in
c ID

Ey

QUIZ
In the expression (\x -> x) x , is x bound or free?

A. first occurrence is bound, second is bound

B. first occurrence is bound, second is free

C. first occurrence is free, second is bound

D. first occurrence is free, second is free

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

21 of 88 9/23/21, 12:07 PM

y

12

EXERCISE: Free Variables
An variable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

FV(x) = ???

FV(\x -> e) = ???

FV(e1 e2) = ???

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

22 of 88 9/23/21, 12:07 PM

Closed Expressions
If e has no free variables it is said to be closed

• Closed expressions are also called combinators

What is the shortest closed expression?

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

23 of 88 9/23/21, 12:07 PM

i lx ex

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

24 of 88 9/23/21, 12:07 PM

ly leg

Semantics: Redex
A redex is a term of the form

 (\x -> e1) e2

A function (\x -> e1)

• x is the parameter

• e1 is the returned expression

Applied to an argument e2

• e2 is the argument

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

25 of 88 9/23/21, 12:07 PM

44

2 3 5 1

The was
b 1g

Semantics: β-Reduction

A redex b-steps to another term …

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means

“ e1 with all free occurrences of x replaced with e2 ”

Computation by search-and-replace:

• If you see an abstraction applied to an argument, take the body of the abstraction

and replace all free occurrences of the formal by that argument

• We say that (\x -> e1) e2 β-steps to e1[x := e2]

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

26 of 88 9/23/21, 12:07 PM

tÉiarg 9

xx ez

D D

Redex Examples

(\x -> x) apple

=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

27 of 88 9/23/21, 12:07 PM

param x

body I
DD arg ripple

http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc
http://goto.ucsd.edu:8095/index.html#?demo=blank.lc

QUIZ

(\x -> (\y -> y)) apple

=b> ???

A. apple

B. \y -> apple

C. \x -> apple

D. \y -> y

E. \x -> y

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

28 of 88 9/23/21, 12:07 PM

paronym y

or

QUIZ

(\x -> y x y x) apple

=b> ???

A. apple apple apple apple

B. y apple y apple

C. y y y y

D. apple

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

29 of 88 9/23/21, 12:07 PM

body an apple

A
W D Ir

11

QUIZ

(\x -> x (\x -> x)) apple

=b> ???

A. apple (\x -> x)

B. apple (\apple -> apple)

C. apple (\x -> apple)

D. apple

E. \x -> x

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

30 of 88 9/23/21, 12:07 PM

2free bound

parody Y
e

apple

I fix lytta D apple

patramTby Frat

b ly apple y

EXERCISE
What is a λ-term fill_this_in such that

fill_this_in apple

=b> banana

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise (https://goto.ucsd.edu

/elsa/index.html#?demo=permalink%2F1585434473_24432.lc)

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

31 of 88 9/23/21, 12:07 PM

MEEEEE Eirene
b Hy

bound

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434473_24432.lc

A Tricky One

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

32 of 88 9/23/21, 12:07 PM

abhishek
ex

free
bound E C

Something is Fishy

(\x -> (\y -> x)) y

=b> \y -> y

Is this right?

Problem: The free y in the argument has been captured by \y in body!

Solution: Ensure that formals in the body are di!erent from free-variables of

argument!

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

33 of 88 9/23/21, 12:07 PM

O O
freevars of

arg y

Tformals in
body y

y
function y return y

a

Capture-Avoiding Substitution
We have to fix our definition of β-reduction:

 (\x -> e1) e2 =b> e1[x := e2]

where e1[x := e2] means “ e1 with all free occurrences of x replaced with e2 ”

• e1 with all free occurrences of x replaced with e2

• as long as no free variables of e2 get captured

Formally:

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

34 of 88 9/23/21, 12:07 PM

function bob return bob

Fun

x[x := e] = e

y[x := e] = y -- as x /= y

(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])

(\x -> e1)[x := e] = \x -> e1 -- Q: Why leave `e1

` unchanged?

(\y -> e1)[x := e]

| not (y in FV(e)) = \y -> e1[x := e]

Oops, but what to do if y is in the free-variables of e ?

• i.e. if \y -> ... may capture those free variables?

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

35 of 88 9/23/21, 12:07 PM

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)

2. α-step (aka renaming formals)

Semantics: α-Renaming

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

36 of 88 9/23/21, 12:07 PM

I

x s bob x bob bobbob
Tree Found

 \x -> e =a> \y -> e[x := y]

where not (y in FV(e))

• We rename a formal parameter x to y

• By replace all occurrences of x in the body with y

• We say that \x -> e α-steps to \y -> e[x := y]

Example:

\x -> x =a> \y -> y =a> \z -> z

All these expressions are α-equivalent

What’s wrong with these?

-- (A)

\f -> f x =a> \x -> x x

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

37 of 88 9/23/21, 12:07 PM

free

jot free in e

ML C C D
reisfree in e

-- (B)

(\x -> \y -> y) y =a> (\x -> \z -> z) z

Tricky Example Revisited

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

38 of 88 9/23/21, 12:07 PM

T L
x
isnot
bound

 (\x -> (\y -> x)) y

-- rename 'y' to 'z' to avoid capture

=a> (\x -> (\z -> x)) y

-- now do b-step without capture!

=b> \z -> y

To avoid getting confused,

• you can always rename formals,

• so di"erent variables have di"erent names!

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

39 of 88 9/23/21, 12:07 PM

Normal Forms
Recall redex is a λ-term of the form

(\x -> e1) e2

A λ-term is in normal form if it contains no redexes.

QUIZ
Which of the following term are not in normal form ?

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

40 of 88 9/23/21, 12:07 PM

A. x

B. x y

C. (\x -> x) y

D. x (\y -> y)

E. C and D

Semantics: Evaluation
A λ-term e evaluates to e' if

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

41 of 88 9/23/21, 12:07 PM

WENORMALFORM
no
red

means
no

yes
hasmoreredexes

no

1. There is a sequence of steps

e =?> e_1 =?> ... =?> e_N =?> e'

where each =?> is either =a> or =b> and N >= 0

2. e' is in normal form

Examples of Evaluation
(\x -> x) apple

=b> apple

(\f -> f (\x -> x)) (\x -> x)

=?> ???

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

42 of 88 9/23/21, 12:07 PM

E

(\x -> x x) (\x -> x)

=?> ???

Elsa shortcuts
Named λ-terms:

let ID = \x -> x -- abbreviation for \x -> x

To substitute name with its definition, use a =d> step:

ID apple

=d> (\x -> x) apple -- expand definition

=b> apple -- beta-reduce

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

43 of 88 9/23/21, 12:07 PM

Evaluation:

• e1 =*> e2 : e1 reduces to e2 in 0 or more steps

◦ where each step is =a> , =b> , or =d>

• e1 =~> e2 : e1 evaluates to e2 and e2 is in normal form

EXERCISE
Fill in the definitions of FIRST , SECOND and THIRD such that you get the following

behavior in elsa

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

44 of 88 9/23/21, 12:07 PM

let FIRST = fill_this_in

let SECOND = fill_this_in

let THIRD = fill_this_in

eval ex1 :

FIRST apple banana orange

=*> apple

eval ex2 :

SECOND apple banana orange

=*> banana

eval ex3 :

THIRD apple banana orange

=*> orange

ELSA: https://goto.ucsd.edu/elsa/index.html

Click here to try this exercise (https://goto.ucsd.edu

/elsa/index.html#?demo=permalink%2F1585434130_24421.lc)

Non-Terminating Evaluation
(\x -> x x) (\x -> x x)

=b> (\x -> x x) (\x -> x x)

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

45 of 88 9/23/21, 12:07 PM
E bye b

https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc
https://goto.ucsd.edu/elsa/index.html#?demo=permalink%2F1585434130_24421.lc

Some programs loop back to themselves…

… and never reduce to a normal form!

This combinator is called Ω

What if we pass Ω as an argument to another function?

let OMEGA = (\x -> x x) (\x -> x x)

(\x -> (\y -> y)) OMEGA

Does this reduce to a normal form? Try it at home!

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

46 of 88 9/23/21, 12:07 PM

Programming in λ-calculus
Real languages have lots of features

• Booleans

• Records (structs, tuples)

• Numbers

• Functions [we got those]

• Recursion

Lets see how to encode all of these features with the λ-calculus.

cse230 file:///Users/rjhala/teaching/230-fa21/docs/lectures/01-lambda.html

47 of 88 9/23/21, 12:07 PM

É

