
Imperative Programming with The
State Monad

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

1 of 47 10/26/21, 12:20 PM

A Tree Datatype
A tree with data at the leaves

data Tree a

= Leaf a

| Node (Tree a) (Tree a)

deriving (Eq, Show)

Here’s an example Tree Char

charT :: Tree Char

charT = Node

 (Node

 (Leaf 'a')

 (Leaf 'b'))

 (Node

 (Leaf 'c')

 (Leaf 'a'))

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

2 of 47 10/26/21, 12:20 PM

f Tree Char

a b c a

gggggjfjijjytree har.Int

Lets Work it Out!
Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)

label = ???

such that

>>> label charT

Node

 (Node

 (Leaf ('a', 0))

 (Leaf ('b', 1)))

 (Node

 (Leaf ('c', 2))

 (Leaf ('a', 3)))

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

3 of 47 10/26/21, 12:20 PM

so

n p n

Hit

Labeling a Tree
label :: Tree a -> Tree (a, Int)

label t = t'

where

 (_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))

helper n (Node l r) = (n'', Node l' r')

where

 (n', l') = helper n l

 (n'', r') = helper n' r

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

4 of 47 10/26/21, 12:20 PM

EXERCISE
Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c') (Lea

f 'a')))

 (Node

 (Node (Leaf ('a', 0)) (Leaf ('b', 0)))

 (Node (Leaf ('c', 0)) (Leaf ('a', 1))))

That is, a separate counter for each key a , b , c etc.

HINT Use the following Map k v type

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

5 of 47 10/26/21, 12:20 PM

-- | The empty Map

empty :: Map k v

-- | 'insert key val m` returns a new map that extends 'm'

-- by setting `key` to `val`

insert :: k -> v -> Map k v -> Map k v

-- | 'findWithDefault def key m' returns the value of `key`

-- in `m` or `def` if `key` is not defined

findWithDefault :: v -> k -> Map k v -> v

Common Pattern?

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

6 of 47 10/26/21, 12:20 PM

Both the functions have a common “shape”

OldInt -> (NewInt, NewTree)

OldMap -> (NewMap, NewTree)

If we generally think of Int and Map Char Int as global state

OldState -> (NewState, NewVal)

State Transformers
Lets capture the above “pattern” as a type

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

7 of 47 10/26/21, 12:20 PM

1. A State Type

type State = ... -- lets "fix" it to Int for now...

2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

• takes as input an old s :: State

• returns as output a new s' :: State and value v :: a

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

8 of 47 10/26/21, 12:20 PM

Executing Transformers
Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a

evalState = ???

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

9 of 47 10/26/21, 12:20 PM

QUIZ
What is the value of quiz ?

st :: St [Int]

st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalState 100 st

A. 103

B. [100, 101, 102]

C. (103, [100, 101, 102])

D. [0, 1, 2]

E. Type error

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10 of 47 10/26/21, 12:20 PM

Lets Make State Transformer a Monad!
instance Monad ST where

 return :: a -> ST a

return = returnST

 (>>=) :: ST a -> (a -> ST b) -> ST b

 (>>=) = bindST

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

11 of 47 10/26/21, 12:20 PM

EXERCISE: Implement returnST !
What is a valid implementation of returnST ?

type State = Int

data ST a = STC (State -> (State, a))

returnST :: a -> ST a

returnST = ???

What is returnST doing ?

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

12 of 47 10/26/21, 12:20 PM

returnST v is a state transformer that … ???

(Can someone suggest an explanation in English?)

HELP
Now, lets implement bindST !

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

13 of 47 10/26/21, 12:20 PM

sta

ÉBÉ
p

sI

type State = Int

data ST a = STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b

bindST = ???

What is bindST doing ?
bindST v is a state transformer that … ???

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

14 of 47 10/26/21, 12:20 PM

ADF.to

(Can someone suggest an explanation in English?)

bindST lets us sequence state transformers

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

15 of 47 10/26/21, 12:20 PM

(>>=) :: ST0 a -> (a -> ST0 b) -> ST0 b

sta >>= f = STC (\s ->

let (s', va) = runState sta s

 stb = f va

 (s'', vb) = runState stb s'

in

 (s'', vb)

)

st >>= f

1. Applies transformer st to an initial state s

◦ to get output s' and value va

2. Then applies function f to the resulting value va

◦ to get a second transformer

3. The second transformer is applied to s'

◦ to get final s'' and value vb

OVERALL: Transform s to s'' and produce value vb

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

16 of 47 10/26/21, 12:20 PM

Lets Implement a Global Counter
The (counter) State is an Int

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

17 of 47 10/26/21, 12:20 PM

stanNItstb i.st b

E DI
State b State

type State = Int

A function that increments the counter to return the next Int .

next :: ST String

next = STC (\s -> (s+1, show s))

next is a state transformer that that returns String values

QUIZ
Recall that

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

18 of 47 10/26/21, 12:20 PM

DID
tick 27 1Xo
tick 7 11
tick six
returnEX2

En.int

taste in

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

What does quiz evaluate to?

quiz = evalState 100 next

A. "100"

B. "101"

C. "0"

D. "1"

E. (101, "100")

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

19 of 47 10/26/21, 12:20 PM

QUIZ
Recall the definitions

evalState :: State -> ST a -> a

evalState s (STC st) = snd (st s)

next :: ST String

next = STC (\s -> (s+1, show s))

Now suppose we have

wtf1 = ST String

wtf1 = next >>= \n ->

return n

What does quiz evaluate to?

quiz = evalState 100 wtf1

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

20 of 47 10/26/21, 12:20 PM

A. "100"

B. "101"

C. "0"

D. "1"

E. (101, "100")

Example

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

21 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

22 of 47 10/26/21, 12:20 PM

Example

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

23 of 47 10/26/21, 12:20 PM

QUIZ
next :: ST String

next = STC (\s -> (s+1, show s)

evalState :: State -> ST a -> a

evalState s (STC f) = snd (f s)

Consider a function wtf2 defined as

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

24 of 47 10/26/21, 12:20 PM

wtf2 = next >>= \n1 ->

 next >>= \n2 ->

 next >>= \n3 ->

return [n1, n2, n3]

What does quiz evaluate to?

quiz = evalState 100 wtf

A. Type Error!

B. [“100”, “100”, “100”]

C. [“0”, “0”, “0”]

D. [“100”, “101”, “102”]

E. [“102”, “102”, “102”]

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

25 of 47 10/26/21, 12:20 PM

Chaining Transformers
>>= lets us chain transformers into one big transformer!

So we can define a function to increment the counter by 3

-- Increment the counter by 3

next3 :: ST [Int]

next3 = next >>= \n1 ->

 next >>= \n2 ->

 next >>= \n3 ->

return [n1,n2,n3]

And then sequence it twice to get

next6 :: ST [Int]

next6 = next3 >>= \ns_1_2_3 ->

 next3 >>= \ns_4_5_6 ->

return (ns_123 ++ ns_4_5_6)

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

26 of 47 10/26/21, 12:20 PM

Lets do the above examples
Remember, do is just nice syntax for the above!

-- Increment the counter by 3

next3 :: ST [Int, Int]

next3 = do

 n1 <- next

 n2 <- next

 n3 <- next

return [n1,n2,n3]

And then sequence it twice to get

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

27 of 47 10/26/21, 12:20 PM

next6 :: ST [Int]

next6 = do

 ns_123 <- next3

 ns_456 <- next3

return (ns_123 ++ ns_4_5_6)

Labeling a Tree with a “Global Counter”
Lets rewrite our Tree labeler with ST

helperS :: Tree a -> ST (Tree (a, Int))

helperS = ???

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

28 of 47 10/26/21, 12:20 PM

Wow, compare to the old code!

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))

helper n (Node l r) = (n'', Node l' r')

where

 (n', l') = helper n l

 (n'', r') = helper n' r

Avoid worrying about propagating the “right” counters

• Automatically handled by ST monad instance!

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

29 of 47 10/26/21, 12:20 PM

Executing the Transformer
In the old code we called the helper with an initial counter 0

label :: Tree a -> Tree (a, Int)

label t = t'

where

 (_, t') = helper 0 t

In the new code what should we do?

helperS :: Tree a -> ST (Tree (a, Int))

helperS = ...

labelS :: Tree a -> Tree (a, Int)

labelS = ???

Now, we should be able to exec the labelS transformer

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

30 of 47 10/26/21, 12:20 PM

>>> labelS (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))

(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)))

How to implement keyLabel ?
So far, we hardwired an Int counter as our State

type State = Int

data ST a = STC (State -> (State, a))

Have to reimplement the monad if we want a di!erent state?

• e.g. Map Char Int to implement keyLabel

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

31 of 47 10/26/21, 12:20 PM

