cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Imperative Programming with The
State Monad

1 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

A Tree Datatype
A tree with data at the leaves

data Tree a
= Leaf a
| Node (Tree a) (Tree a)
deriving (Eq, Show)

Here’s an example Tree Char

[]
charT :: Tree Char
charT = Node Tree Cher
(Node
(Leaf 'a')
(Leaf 'b"))
(Node
(Leaf 'c')
(Leaf 'a'))

2 of 47 10/26/21,12:20 PM

cse230 . https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Lets Work it Out!

Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)
label = ???

such that

>>> label charT
Node
(Node
(Leaf ('a', 0))
(Leaf ('b', 1)))
(Node
(Leaf ('c', 2))
(Leaf ('a', 3)))

3 of 47 10/26/21, 12:20 PM

cse230

4 of 47

Labeling a Tree

label :: Tree a -> Tree (a, Int)

label t = t'
where
(_, t') = (helper 0 t)

helper :: Int -> (Int, Tree (a, Int))
(n+1, Leaf (x, n))
(n'', Node 1' r")

helper n (Leaf x)
helper n (Node 1 r)

where
(n', 1") = helper n 1
(n'', r") = helper n' r

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

EXERCISE

Now, modify label so that you get new numbers for each letter so,

>>> keyLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c') (Lea
f 'a")))
(Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1))))

That is, a separate counter for each key a, b, c etc.

HINT Use the following Map k v type

5 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

-- | The empty Map
empty :: Map k v

-- | 'insert key val m' returns a new map that extends 'm'
-- by setting ‘key® to ‘val’
insert :: k ->v ->Map kv -> Map k v

-- | '"findwWithDefault def key m' returns the value of ‘key’

-- in 'm° or ‘def’ if ‘key' is not defined
findWithDefault :: v -> k -> Map k v -> v

Common Pattern?

6 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Both the functions have a common “shape”

0ldInt -> (NewInt, NewTree)

OldMap -> (NewMap, NewTree)
If we generally think of Int and Map Char Int as global state

OldState -> (NewState, NewVal)

State Transformers

Lets capture the above “pattern” as a type

7 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

1. A State Type

type State = ... -- lets "fix" it to Int for now...
2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

e takesasinputanold s :: State

e returns asoutputanew s' :: State andvalue v :: a

S

8 of 47

10/26/21,12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Executing Transformers

Lets write a function to evaluate an ST a

evalState :: State -> ST a -> a
evalState = ??2?

9 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

QUIZ

What is the value of quiz ?

st :: St [Int]
st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalState 100 st
A. 103

B. [100, 101, 102]

C. (103, [100, 101, 102])
D. [0, 1, 2]

E. Type error

10 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Lets Make State Transformer a Monad!

instance Monad ST where
return :: a -> ST a
return = returnST

(>>=) :: STa->(a->STb) ->SThb
(>>=) = bindST

11 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

EXERCISE: Implement returnST!

What is a valid implementation of returnST?

Int
STC (State -> (State, a))

type State
data ST a

returnST :: a -> ST a
returnST = 2??

What is returnST doing ?

12 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

returnST v is a state transformer that ... 7??

(Can someone suggest an explanation in English?)

a.b.sthb o)
—>

HELP

O
Now, lets implement bindST!
Show (+)
“1o"
| ret &
N+ q <
13 of 47 102 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

type State = Int

data ST a

STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b
bindST = 22?

N

What is b1ndST doing :

bindST v is astate transformer that ... 2??

14 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

(Can someone suggest an explanation in English?)

bindST lets us sequence state transformers

15 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

(>>=) :: STO a -> (a -> STO b) -> STO b
sta >>= f = STC (\s ->

let (s', va) = runState sta s
stb = f va
(s'', vb) = runState stb s'
in
(s'', vb)

st >>= f

1. Applies transformer st to an initial state s
o to getoutput s' and value va

2. Then applies function f to the resulting value va
o to get a second transformer

3. The second transformer is applied to s

o togetfinal s'' and value vb

OVERALL: Transform s to s'' and produce value vb

?vb

16 of 47

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Ve —— |

\va = eb >

? ??

S S S

ea >= (\va = eb)
a-f- sth

Sta >>=@ mST b

v Stelid — (b) State)

Lets Implement a Global Counter

The (counter) State isan Int

17 of 47 10/26/21,12:20 PM

cse230

type State = Int

A function that increments the counter to return the next Int.

next :: ST String
next = STC (\s -> (s+1, show s))

next isa state tra@prmer thatthat returns String values
S e) T y—]
5 s’
ek 3= \ Yoo

Lick SO=\kt =

bcle >>=My 2
Y'Ww &)7‘7’]

3

N Ef\’mk"

4 -

QUIZ

Recall that

18 of 47

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21,12:20 PM

cse230

19 of 47

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String
next = STC (\s -> (s+1, show s))

What does quiz evaluate to?

quiz = evalState 100 next

A. "100"

B. "101"

C. "0"

D. "1"

E. (101, "100")

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

QUIZ

Recall the definitions

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST String
next = STC (\s -> (s+1, show s))

Now suppose we have

wtfl
wtfil

ST String

next >>= \n ->

return n
What does quiz evaluate to?

quiz = evalState 100 wtfil

20 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

A. "100"
B. "101"
C. "o"
D. "1"

E. (101, "100")

Example

next :: STO String

21 of 47 10/26/21,12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

SToC (\s — (s+1, show s))

next

wtf :: STO [String]
wtf next = (\v = return [v])

evalState wtf 1

quiz
[“1"]

V = “1"
4>[\v% return [v] _ >
/ 2 2

——V[next

22 of 47 10/26/21,12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Example

next :: STO String
next = STOC (\s — (s+1, show s))

wtf :: STO [String]

wtf = next »= (\vl = next »= (\v2 - return [v1l, v2]))
quiz = evalState wtf 1
[“1"'“2"]
V1 - “1" V2 - “2"
J—
——|next »\v2 = next}]—> \v2 > return [v1,v2] >
1 2 3 3

23 of 47

10/26/21,12:20 PM

cse230

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

QUIZ

next :: ST String
next = STC (\s -> (s+1, show s)

evalState :: State -> ST a -> a
evalState s (STC f) = snd (f s)

Consider a function wtf2 defined as

24 of 47

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

wtf2 = next >>= \n1l ->
next >>= \n2 ->
next >>= \n3 ->
return [n1, n2, n3]

What does quiz evaluate to?
quiz = evalState 100 wtf

A. Type Error!

B.[“100”, “100”, “100”]
C. [“O”, “O”, “O”]

D. [((100)), ((101))’ ((102))]

E.[“102”, “102”, “102"]

25 of 47 10/26/21, 12:20 PM

cse230

Chaining Transformers

>>= lets us chain transformers into one big transformer!

So we can define a function to increment the counter by 3

-- Increment the counter by 3
next3 :: ST [Int]
next3 = next >>= \nl ->
next >>= \n2 ->
next >>= \n3 ->
return [n1,n2,n3]

And then sequence it twice to get

next6 :: ST [Int]
next6 = next3 >>= \ns_ 1.2 3 ->
next3 >>= \ns_4 .5 6 ->

return (ns_123 ++ ns_4_5 6)

26 of 47

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21, 12:20 PM

cse230

Lets doO the above examples

Remember, do is just nice syntax for the above!

-- Increment the counter by 3
next3 :: ST [Int, Int]
next3 = do

nl <- next

n2 <- next

n3 <- next

return [n1,n2,n3]

And then sequence it twice to get

27 of 47

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

next6 :: ST [Int]
next6 = do
ns_123 <- next3
ns_456 <- next3
return (ns_123 ++ ns_4_5_6)

Labeling a Tree with a “Global Counter”

Lets rewrite our Tree labeler with ST

helperS :: Tree a -> ST (Tree (a, Int))
helperS = 2?2?

28 of 47 10/26/21, 12:20 PM

cse230

Wow, compare to the old code!

helper :: Int -> (Int, Tree (a, Int))
(n+1, Leaf (x, n))
(n'', Node 1' r")

helper n (Leaf x)
helper n (Node 1 r)

where
(n', 1Y) = helper n 1
(n'', ") = helper n' r

Avoid worrying about propagating the “right” counters

 Automatically handled by ST monad instance!

29 of 47

https://ucsd-cse230.github.io/fa21/lectures/11-state.html

10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

Executing the Transformer

In the old code we called the helper with an initial counter 0

label :: Tree a -> Tree (a, Int)
label t = t'
where
(., t') = helper 0 t

In the new code what should we do?

helperS :: Tree a -> ST (Tree (a, Int))
helperS = ...

labelS :: Tree a -> Tree (a, Int)
labelS = ?2?

Now, we should be able to exec the labelS transformer

30 of 47 10/26/21, 12:20 PM

cse230 https://ucsd-cse230.github.io/fa21/lectures/11-state.html

>>> labelS (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))
(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)))

How to implement kKeylLabe l ?

So far, we hardwired an Int counter as our State

Int

type State

data ST a

STC (State -> (State, a))

Have to reimplement the monad if we want a different state?

e e.g. Map Char Int toimplement keylLabel

31 of 47 10/26/21, 12:20 PM

