Lambda Calculus

Your Favorite Language

Probably has lots of features:

- Assignment ($\mathrm{x}=\mathrm{x}+1$)
- Booleans, integers, characters, strings, ...
- Conditionals
- Loops
- return, break, continue
- Functions
- Recursion
- References / pointers
- Objects and classes
- Inheritance
- ...

Which ones can we do without?
What is the smallest universal language?

What is computable?

Informal notion of an effectively calculable function:
inputs, produce, output

Before 1930s

"operations"

"simplification"
"doing stuff"
can be computed by a human with pen and paper, following an algorithm

1936: Formalization

What is the smallest universal language?

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus.

Peter Landin, 1966

The Lambda Calculus

Has one feature:

- Functions

No, really

- Assignment $(*=x+1)$
- Boolean, integers, characters, strings,...
- Conditionals
- Loops
- return, break, - continue
- Functions
- Recursion
- References / pointers
- Objects and classes
- Inheritance
- Reflection
$(\operatorname{fanction}(x)\{x\})(y) \rightarrow y$

More precisely, only thing you can do is:

- Define a function
- Call a function

Describing a Programming Language

- Syntax: what do programs look like?

Semantics, what do programs mean?

- Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

$$
E:=x, y, z, r^{\text {vars }}
$$

e : : = $x y, z, \ldots$
| ($\backslash x->e)$
| (e e)
fane $\int_{\text {arg }} \mid E(E) \quad r_{\text {calls }}$
Programs are expressions e (also called λ-terms) of one of three kinds:

- Variable

○ x, y, z
"abstraction" $=h_{n}$ def "application" = funcall

- Abstraction (aka nameless function definition)
- ($\backslash x$-> e)
- x is the formal parameter, e is the body
- "for any x compute e"
- Application (aka function call)
- (el ez)
- ex is the function, ez is the argument
- in your favorite language: e1(e2)
(Here each of e, e1, ez can itself be a variable, abstraction, or application)

Examples
|x -> x -- The "identity function" (id)
-- ("for any x compute x")
\x -> (\y -> y) -- A function that returns (id)
\f -> (f $(\backslash x$-> $x)$) -- A function that applies its argument to id

$$
\begin{array}{r}
e \\
= \\
\quad:=x, y, z, \ldots \\
\mid(\backslash x \rightarrow e . .
\end{array}
$$

QUIZ

Which of the following terms are syntactically incorrect?
A. $\backslash(\backslash x->x)->y$ ie NOT valid LC express
B. $\mid x \rightarrow x x$
C. $\backslash x \rightarrow x(y x)$
D. A and C

E. all of the above

Examples

$$
\begin{aligned}
& \text { \x -> x -- The identity function } \\
& \text {-- ("for any x compute x") } \\
& \text { \x -> (\y -> y) -- A function that returns the identity function } \\
& \text { \f -> f (\x -> x) -- A function that applies its argument } \\
& \text {-- to the identity function }
\end{aligned}
$$

How do I define a function with two arguments?

- e.g. a function that takes x and y and returns y ?

$$
\begin{aligned}
\text { \x -> (} \backslash \mathrm{y}->\mathrm{y}) \quad & - \text { - A function that returns the identity function } \\
& - \text { OR: a function that takes two arguments } \\
& \text {-- and returns the second one! }
\end{aligned}
$$

How do I apply a function to two arguments?

- e.g. apply $\backslash x$-> ($\backslash \mathrm{y}->\mathrm{y})$ to apple and banana?
$(((\langle x \rightarrow(l y \rightarrow \ldots))$ apple $)$ banana $)$


```
Syntactic Sugar
    ((x y) z) x (yz)
    instead of
        we write
    \x -> (\y -> (\z -> e))↔\x -> \y -> \z -> e
    \x -> \y -> \z -> e \longleftrightarrow\x y z -> e
(((e1 e2) e3) e4) e1 e2 e3 e4
\x y -> y -- A function that that takes two arguments
    -- and returns the second one...
```

(\x y -> y) apple banana -- ... applied to two arguments

Semantics: What Programs Mean

Think of middle-school algebra:

Execute $=$ rewrite step-by-step

- Following simple rules
- until no more rules apply

Rewrite Rules of Lambda Calculus

$$
e:=x, y, z \ldots
$$

(1) "use/acc"

1. β-step (aka function call)
$1\left({ }_{1} \underset{\sim}{ } \rightarrow e\right)$
(2) "define"
2. α-step (aka renaming formals)

$$
\begin{equation*}
1(e e) \tag{3}
\end{equation*}
$$

Where are variables "inhoduced"
But first we have to talk about scope
"The scope of a variable is
the parts/region of the code
where you can access that
variable"
Semantics: Scope of a Variable
The part of a program where a variable is visible
In the expression (\x->e)

- x is the newly introduced variable
- e is the scope of x
- any occurrence of x in $\left(\left\langle x^{6}>e\right)\right.$ is bound (by the binder $\langle x$)

For example, x is bound in:

An occurrence of x in e is free if it's not bound by an enclosing abstraction

For example, x is free in:

```
(x y) -- no binders at all!
(\y -> x y) -- no |x binder
(\x -> (\y -> y)) x -- x is outside the scope of the |x binder;
    -- intuition: it's not "the same" x
```


QUIZ

In the expression $(\backslash x->x) x$, is x bound or free?
A. first occurrence is bound, second is bound x
B. first occurrence is bound, second is free
C. first occurrence is free, second is bound y
D. first occurrence is free, second is free \Varangle

EXERCISE: Free Variables
An variable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

$$
\begin{array}{ll}
F V(x) & =\{x\} \\
F V(\backslash x->e) & =? ? ? \operatorname{FV}(e)-\{x\} \\
F V(e 1 e 2) & =? F V\left(e_{1}\right) \cup \quad F V\left(e_{2}\right)
\end{array}
$$

$$
F V(\backslash x \rightarrow x)=\varnothing
$$

$$
F V(\mid x \rightarrow y)=\{y\}
$$

$$
\operatorname{Fv}((\Delta x \rightarrow x) x)=\{x\}
$$

$$
F V(x y)=\{x, y\}
$$

$$
F V(x)=\{x\}
$$

Closed Expressions
If e has no free variables it is said to be closed

- Closed expressions are also called combinators
Y - COMBINATOR "STARTUP IncunATO"

What is the shortest closed expression?

$$
(x \rightarrow x)
$$

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)
2. α-step (aka renaming formals)

Semantics: Redex

$n_{1} \oplus n_{2}$
A redex is a term of the form

- x is the parameter
- el is the returned expression

Applied to an argument ez

- ez is the argument

$$
\begin{aligned}
& (\backslash x \rightarrow x) \text { apple } \\
& \left(\left(x_{x} \rightarrow\left(\backslash x \rightarrow x_{0}\right)\right)\right. \text { apple } \\
& \text { =b) apple } \quad 1=\text { b) \apple } \rightarrow \text { apple } \\
& 2=\text { b) } \text { \apple } \rightarrow x \\
& \text { Semantics: } \left.\beta \text {-Reduction }{ }_{3=b}\right\rangle \quad \backslash x \rightarrow \text { apple } \\
& \text { A rede b-steps to another term ... } \\
& 4=b) \quad \Delta x \rightarrow x \\
& \text { (} \mid x \rightarrow \text { er) er } \Rightarrow b>\text { e1[x:=e2] } \underset{\sim}{S}=b\rangle \text { WTF B goingon!!! }
\end{aligned}
$$

where e1[x := e2] means
"el with all free occurrences of x replaced with ez"

Computation by search-and-replace:

- If you see an abstraction applied to an argument, take the body of the abstraction and replace all free occurrences of the formal by that argument
- We say that ($\backslash \mathrm{x}$-> el) er β-steps to e1[x := en]

Redex Examples

```
(\x -> x) apple
=b> apple
```

Is this right? Ask Elsa (https://elsa.goto.ucsd.edu/index.html\#? demo=permalink\%2F1695925711_23.lc)

QUIZ

$$
\begin{aligned}
& (\backslash x \text {-> (} \backslash y->y)) \text { apple } \\
& =b>\text { ??? }
\end{aligned}
$$

A. apple
B. \y -> apple
C. \x -> apple
D. $\backslash y->y$
E. $\backslash x->y$

QUIZ
 ($\backslash x->$ y x́y x apple =b> ??
 $(((a b) c) d)$

A. apple apple apple apple
B. y apple y apple
C. y y y y
D. apple

QUIZ

A. apple ($\backslash x$-> x)
B. apple (\apple -> apple)
$\left(\left(e_{1} e_{2}\right) \ell_{3}\right)$
C. apple (\x -> apple)
D. apple
$\left(\backslash x \rightarrow x\left(\left({ }_{x \rightarrow x}\right)\right.\right.$ banane $\left.)\right)$ apple
E. $\langle x$-> x

EXERCISE

What is a λ-term fill_this_in such that

```
fill_this_in apple
=b> banana
```

ELSA: https://elsa.goto.ucsd.edu/index.html
Click here to try this exercise (https://elsa.goto.ucsd.edu/index.html\#?
demo=permalink\%2F1585434473_24432.lc)

A Tricky One

Is this right?

Something is Fishy

$$
\left.\begin{array}{l}
(\mid x \rightarrow(\mid y-\rightarrow x)) y=a\rangle((x \rightarrow(\text { ginffe } \rightarrow x)) y \\
=b>\mid y \rightarrow y \\
\text { Is this right? }
\end{array} \quad=b\right) \quad(\text { ggiaff } \rightarrow y)
$$

Problem: The free y in the argument has been captured by $\backslash \mathrm{y}$ in body!

Solution: Ensure that formals in the body are different from free-variables of argument!

Capture-Avoiding Substitution

We have to fix our definition of β-reduction:

$$
(\backslash x \text {-> e1) e2 }=b>\quad e 1[x:=e 2]
$$

where $e 1[x:=e 2]$ means "e1 with all free occurrences of $*$ replaced with $e 2$ "

- e1 with all free occurrences of \times replaced with e2
- as long as no free variables of e2 get captured

Formally:

```
cat [cat: \(=\) horse] \(\rightarrow\) horse
\(x[x:=e] \quad=e\)
cat \([\) dos \(:=\) horse \(] \rightarrow\) cat
\(\mathrm{y}[\mathrm{x}:=\mathrm{e}] \quad=\mathrm{y} \quad-\mathrm{as} \mathrm{x} /=\mathrm{y}\)
(e1 e2)[x := e] = (e1[x :=e]) (e2[x:=e])
\((\) leat \(\rightarrow\) cat \()\left[\right.\) cat : \(:\) doj \(\left._{\text {o }}\right]\)
\((1 x \rightarrow->\) e1 \([x:=e]\)
\(\left.\begin{array}{l}\left(\begin{array}{ll}l y \rightarrow x\end{array}\right)[x:=y] \\ y \rightarrow e 1\end{array}\right)[x:=e]\)
    \(\mid \operatorname{not}(\underline{\sim}\) in \(F V(e))=\mid y \rightarrow e 1[x:=e]\)
```

Oops, but what to do if y is in the free-variables of e ?

- i.e. if \y -> . . . may capture those free variables?

Rewrite Rules of Lambda Calculus

1. β-step (aka function call)
2. α-step (aka renaming formals)

Semantics: α-Renaming

$$
\begin{aligned}
& \text { \x -> e =a> } \backslash y->e[x:=y] \\
& \text { where not }(y \text { in } \operatorname{FV}(e))
\end{aligned}
$$

- We rename a formal parameter x to y
- By replace all occurrences of x in the body with y
- We say that $\backslash x$-> e α-steps to $\backslash \mathrm{y}$-> $\mathrm{e}[\mathrm{x}:=\mathrm{y}]$

Example:
|x -> $x \quad=a>\quad$ ly $->y \quad=a>\quad \backslash z ~->~ z$
All these expressions are α-equivalent

What's wrong with these?
-- (A)
\f $\rightarrow f x \quad=a>\quad \mid x$-> x x
-- (B)
$(\backslash x->(\mid y \rightarrow y) y=a>\quad(\backslash x \rightarrow \backslash z->z)$ z

Tricky Example Revisited

```
(\x -> (\y -> x)) y
    -- rename 'y' to 'z' to avoid capture
=a> (\x -> (\z -> x)) y
    -- now do b-step without capture!
=b> \z -> y
```

To avoid getting confused,

- you can always rename formals,
- so different variables have different names!

Normal Forms

Recall redex is a λ-term of the form
($\backslash x$-> e1) e2
A λ-term is in normal form if it contains no redexes.

QUIZ

Which of the following term are not in normal form ?
A. x
B. $x y$

X C. $(\backslash x->x) y$
D. $x(\backslash y->y)$
E. C and D

Semantics: Evaluation

A λ-term e evaluates to e^{\prime} if

1. There is a sequence of steps

$$
\mathrm{e}=?>\mathrm{e} _1=?>\ldots \text { =?> e_N =?> e' }
$$

where each $=$? $>$ is either $=a>$ or $=b>$ and $N>=0$
2. e^{\prime} is in normal form

Examples of Evaluation

$$
\begin{aligned}
& \text { (\x -> x) apple } \\
& \text { =b> apple } \\
& \begin{array}{l}
\text { normal body } \quad \text { ass } \\
(\backslash f(\underset{f}{f}(\backslash x->x) \quad(\backslash x->x) \\
=?>? ? ?
\end{array} \\
& \left(1 x_{-} \rightarrow x\right)(1 x \rightarrow x) \\
& \Rightarrow(1 x \rightarrow x) \\
& (\backslash x->x \times)(\backslash x->x) \\
& \text { =?> ??? }
\end{aligned}
$$

Elsa shortcuts

Named λ-terms:
let ID = |x -> x -- abbreviation for |x -> x

To substitute name with its definition, use a = $\mathrm{d}>$ step:

```
ID apple
    =d> (\x -> x) apple -- expand definition
    =b> apple -- beta-reduce
```

Evaluation:

- e1 =*> e2: e1 reduces to e2 in o or more steps
- where each step is =a> , =b> , or =d>
- e1 =~> e2: e1 evaluates to e2 and e2 is in normal form

EXERCISE

Fill in the definitions of FIRST, SECOND and THIRD such that you get the following behavior in elsa

```
let FIRST = fill_this_in
let SECOND = fill_this_in
let THIRD = fill_this_in
eval exp :
                        \(\left(\Delta x_{1} \rightarrow\left(\backslash x_{2} \rightarrow\left(1 x_{3} \rightarrow x_{1}\right)\right)\right)\)
(((FIRST apple) banana) orange)
    =*> apple
        \(\left(\ x_{1} \rightarrow\left(\backslash x_{2} \rightarrow\left(1 x_{3} \rightarrow x_{2}\right)\right)\right)\)
eval ex :
( ((SECOND apple) banana) orange)
    =*> banana
        \(\left(\Delta x_{1} \rightarrow\left(\backslash x_{2} \rightarrow\left(\backslash x_{3} \rightarrow x_{3}\right)\right)\right)\)
eval ex :
    (THIRD apple) banana) orange)
    =*> orange
```

ELSA: https://goto.ucsd.edu/elsa/index.html
Click here to try this exercise (https://goto.ucsd.edu/elsa/index.html\#?
demo=permalink\%2F1585434130_24421.lc)

Non-Terminating Evaluation

$$
\begin{aligned}
& \text { (} \backslash \mathrm{x} \text {-> } \mathrm{x} x \text {) (} \backslash \mathrm{x} \text {-> } \mathrm{x} \text { x) } \\
& \text { =b> (\x -> x x) (\x -> x x) }
\end{aligned}
$$

Some programs loop back to themselves...
... and never reduce to a normal form!
This combinator is called Ω

What if we pass Ω as an argument to another function?
let OMEGA $=(\backslash x->x x)(\backslash x->x x)$
(\x -> (\y -> y)) OMEGA
Does this reduce to a normal form? Try it at home!

Programming in λ-calculus

Real languages have lots of features

- Boolean
© Records (structs, tuples), lists, trees,...
- Numbers
- Functions [we got those]
\bigcirc Recursion
Lets see how to encode all of these features with the λ-calculus.

Well, what do we do with a Boolean b ?
make a Choice

Make a binary choice

- if b then e1 else e2

Booleans: API

We need to define three functions

```
let TRUE = ???
let FALSE = ???
let ITE = \b x y -> ??? -- if b then x else y
```

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana
(Here, let NAME $=\mathrm{e}$ means NAME is an abbreviation for e)

Booleans: Implementation

```
let TRUE = \x y -> x -- Returns its first argument
let FALSE = \x y -> y -- Returns its second argument
let ITE = \b x y -> b x y -- Applies condition to branches
-- (redundant, but improves readability)
```


Example: Branches step-by-step

```
eval ite_true:
    ITE TRUE e1 e2
    =d> (\b x y -> b x y) TRUE e1 e2 -- expand def ITE
    =b> (\x y -> TRUE x y) e1 e2 -- beta-step
    =b> (\y -> TRUE e1 y) e2 -- beta-step
    =b> TRUE e1 e2 -- expand def TRUE
    =d> (\x y -> x) e1 e2 -- beta-step
    =b> (\y -> e1) e2 -- beta-step
    =b> e1
```


Example: Branches step-by-step

Now you try it!
Can you fill in the blanks to make it happen? (https://elsa.goto.ucsd.edu/index.html\#?
demo=ite.lc)

```
eval ite_false:
    ITE FALSE e1 e2
    -- fill the steps in!
    =b> e2
```


EXERCISE: Boolean Operators

ELSA: https://goto.ucsd.edu/elsa/index.html Click here to try this exercise (https://goto.ucsd.edu/elsa/index.html\#?demo=permalink\%2F1585435168_24442.lc)

Now that we have ITE it's easy to define other Boolean operators:

```
let NOT = \b -> ???
let OR = \b1 b2 -> ???
let AND = \b1 b2 -> ???
```

When you are done, you should get the following behavior:

```
eval ex_not_t:
    NOT TRUE =*> FALSE
eval ex_not_f:
    NOT FALSE =*> TRUE
eval ex_or_ff:
    OR FALSE FALSE =*> FALSE
eval ex_or_ft:
    OR FALSE TRUE =*> TRUE
eval ex_or_ft:
    OR TRUE FALSE =*> TRUE
eval ex_or_tt:
    OR TRUE TRUE =*> TRUE
eval ex_and_ff:
    AND FALSE FALSE =*> FALSE
eval ex_and_ft:
    AND FALSE TRUE =*> FALSE
eval ex_and_ft:
    AND TRUE FALSE =*> FALSE
eval ex_and_tt:
    AND TRUE TRUE =*> TRUE
```


Programming in λ-calculus

- Boolean [done]
- Records (structs, tuples)
collection of things
- Numbers
L "get" one thing from collets
- Functions [we got those] \rightarrow "set" I"creat." asllections
- Recursion

$$
\begin{aligned}
& \text { EST }\left(\text { NKPair } t_{1} t_{2}\right) \quad \begin{array}{l}
\text { SND }\left(\text { MKPair } t_{1} t_{2}\right) \\
=t_{1}
\end{array} \\
& \text { MKPair }=1 t_{1} t_{2} \rightarrow\left(b \rightarrow \text { ITE } b \quad t_{1} t_{2}\right) \\
& \text { PST }=1 p \rightarrow P \text { TRUE } \rightarrow P \text { FALSE } \\
& \text { IND }
\end{aligned}
$$

λ-calculus: Records
Let's start with records with two fields (aka pairs)
What do we do with a pair?

1. Pack two items into a pair, then
2. Get first item, or
3. Get second item.

Pairs : API

We need to define three functions

$$
\begin{array}{ll}
\text { let PAIR }=\backslash x \text { y }->? ? ? & \begin{array}{l}
- \text { - Make a pair with elements } x \text { and } y \\
\text { let FST }=\backslash p->~ ? ? ? ~
\end{array} \\
\begin{array}{ll}
--\{\text { fst }: x, \text { snd }: y\}
\end{array} \\
\text { let SND }=\backslash p->? ? ? & - \text { Return first element } \\
& - \text { - Return second element } \\
& --p . s n d
\end{array}
$$

such that

```
eval ex_fst:
```

 FST (PAIR apple banana) =*> apple
 eval ex_snd:
SND (PAIR apple banana) =*> banana

Pairs: Implementation

A pair of x and y is just something that lets you pick between x and y ! (i.e. a function that takes a boolean and returns either x or y)

```
let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE -- call w/ TRUE, get first value
let SND = \p -> p FALSE -- call w/ FALSE, get second value
```


EXERCISE: Triples

How can we implement a record that contains three values?
ELSA: https://goto.ucsd.edu/elsa/index.html
Click here to try this exercise (https://goto.ucsd.edu/elsa/index.html\#?
demo=permalink\%2F1585434814_24436.lc)
let TRIPLE = x y z -> ???
let $\mathrm{FST3}=$ \t -> ???
let SND3 = \t -> ???
let THD3 = \t -> ???
eval ex1:
FST3 (TRIPLE apple banana orange)
=*> apple
eval ex2:
SND3 (TRIPLE apple banana orange)
=*> banana
eval ex3:
THD3 (TRIPLE apple banana orange)
=*> orange

Programming in λ-calculus

- Booleans [done]
- Records (structs, tuples) [done]
- Numbers
- Functions [we got those]
- Recursion

IIIII

IIIIII
λ-calculus: Numbers
Let's start with natural numbers ($0,1,2, \ldots$)

$$
{ }^{\prime \prime} n^{\prime}=\ f x \rightarrow \underbrace{f(\ldots f(f(f x)))}_{n \text {-times }}
$$

What do we do with natural numbers?

- Count: 0, inc
- Arithmetic: dec , +, - , *
- Comparisons: == , <= , etc

$$
(n f x) \equiv f^{n}(x)
$$

Natural Numbers: API

We need to define:

- A family of numerals: ZERO, ONE , TWO, THREE , ...
- Arithmetic functions: INC , DEC , ADD, SUB , MULT
- Comparisons: IS_ZERO , EQ

Such that they respect all regular laws of arithmetic, e.g.

```
IS_ZERO ZERO =~> TRUE
IS_ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO
```


Natural Numbers: Implementation

Church numerals: a number N is encoded as a combinator that calls a function on an argument N times
let $0 N E=\backslash f x->f x$
let TWO $=\backslash f x \rightarrow f(f x)$
let THREE $=\backslash f x$ $\rightarrow f(f(f x))$
let FOUR $=\backslash f x->f(f(f(f x)))$
let FIVE $=\backslash f x->f(f(f(f(f x))))$
let SIX $=\backslash f x->f(f(f(f(f(f x)))))$

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ?

- A: let ZERO $=$ \f x-> x
- B: let ZERO $=\backslash f \times$-> f
- c: let ZERO $=\backslash f x \rightarrow f x$ GNE!
- D: let ZERO $=\underline{\text { |x }->x} \quad X$
- E: None of the above

Does this function look familiar?
λ-calculus: Increment
-- Call `\(f\) ' on ‘ \(x\) ' one more time than` n ' does
let INC = \n -> (\f x -> ???)

$$
\begin{aligned}
& \text { INC } n=\backslash f x \rightarrow \underset{\lambda}{n} \overbrace{\underbrace{\cdots f(f(f(x))})}^{n \text { times }}) \\
& =\backslash f x \rightarrow f(n f x)_{n+1} \text { times } \\
& n f x=f^{n}(x)
\end{aligned}
$$

Example:

```
eval inc_zero :
    INC ZERO
    =d> (\n f x -> f (n f x)) ZERO
    =b> \f x -> f (ZERO f x)
    =*> \f x -> f x
    =d> ONE
```


EXERCISE

Fill in the implementation of ADD so that you get the following behavior Click here to try this exercise (https://goto.ucsd.edu/elsa/index.html\#? demo=permalink\%2F1585436042_24449.lc)

$$
\begin{aligned}
& \text { let } Z E R O=\backslash f x \text {-> } x \\
& \text { let ONE }=\backslash f x->f x \\
& \text { let TWO }=\backslash f x->f(f x) \\
& \text { let INC }=\backslash n f x \rightarrow f(n f x) \\
& \text { let ADD = fill_this_in } \\
& \text { ADD ONE ZERO =~> ONE } \\
& \text { evan add_one_zero: } \\
& \text { ADD ONE ONE =~> TWO } \\
& \text { evan add_two_zero: } \\
& \text { ADD TWO ZERO =~> TWO } \\
& \left(n_{2}+\cdots \cdot\left(n_{2}+\left(n_{2}+\operatorname{ZERO}\right)\right)\right.
\end{aligned}
$$

QUIZ
How shall we implement ADD ?
A. let $A D D=\backslash n \mathrm{~m}->\mathrm{n}$ INC m
B. let $A D D=\backslash n \mathrm{~m}->\operatorname{INC} \mathrm{n} \mathrm{m}$
C. Let $A D D=\backslash n \mathrm{~m}->\mathrm{n} \mathrm{m}$ INC
D. let $A D D=\ n m->n(m$ INC)
E. let $A D D=\ n \mathrm{~m}->\mathrm{n}$ (INC m)
λ-calculus: Addition

```
-- Call `f` on `x` exactly `n + m` times
let ADD = \n m -> n INC m
```


Example:

```
eval add_one_zero :
    ADD ONE ZERO
    =~> ONE
```


QUIZ

How shall we implement MULT ?
A. let MULT $=$ \n m -> n ADD m
B. let MULT $=$ \n m -> n (ADD m) ZERO
C. let MULT $=$ \n m -> m (ADD n) ZERO
D. let MULT = \n m -> n (ADD m ZERO)
E. let MULT $=$ \n m -> (n ADD m) ZERO

λ-calculus: Multiplication

```
-- Call `f` on `x` exactly `n * m` times
let MULT = \n m -> n (ADD m) ZERO
```

Example:
eval two_times_three :
MOLT TWO ONE
=~> TWO

IS_EERO ZERO \rightarrow TRUE
$15.2 E R 2 D$ ONE \rightarrow FALSE
IS. TERR TWO D \rightarrow FALSE

Programming in λ-calculus

\checkmark Boolean [done]
Haskell

- Records (structs, tuples) [done]
\checkmark Numbers [done]
- Lists
- Functions [vye got those]
- Recursion

λ-calculus: Lists

Lets define an API to build lists in the λ-calculus.
An Empty List
NIL
Constructing a list
Alist with 4 elements
CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))
intuitively CONS h t creates a new list with

- head h
- tail t

Destructing a list

- HEAD l returns the first element of the list
- TAIL l returns the rest of the list

HEAD (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL))))
=~> apple
TAIL (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL)))) =~> CONS banana (CONS cantaloupe (CONS dragon NIL)))

λ-calculus: Lists

let NIL = ???
let CONS = ???
let HEAD = ???
let TAIL = ???
"fest" "mkPair"
HEAD (cons $h t$)
=*) h
"sud
TAIL (cons $h t$)
eval exHd: $=$ - t
HEAD (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL)))) =~> apple
eval ext
TAIL (CONS apple (CONS banana (CONS cantaloupe (CONS dragon NIL)))) =~> CONS banana (CONS cantaloupe (CONS dragon NIL)))

EXERCISE: Nth

$$
z=1 f x \rightarrow x
$$

Write an implementation of GetNth such that

$$
O N E=1 f x \rightarrow f x
$$

$$
\operatorname{ThOO}_{\text {he list } l}=1 f_{x} \rightarrow f\left(f_{x}\right)
$$

- GetNth $n l$ returns the n-th element of the list l

Assume that l has n or more elements
let GetNth = ???

eval nth :

eval nth :
 =~> cantaloupe

Click here to try this in elsa (https://goto.ucsd.edu/elsa/index.html\#? demo=permalink\%2F1586466816_52273.lc)

λ-calculus: Recursion

I want to write a function that sums up natural numbers up to n :
let $\operatorname{SUM}=\backslash n->\ldots \quad-0+1+2+\ldots+n$
such that we get the following behavior
eval exSum0: SUM ZERO =~> ZERO
eval exSum1: SUM ONE =~> ONE
eval exSum2: SUM TWO =~> THREE
eval exSum3: SUM THREE =~> SIX

0
$0+1$
$0+1+2$
$0+1+2+3$

Can we write sum using Church Numerals?
Click here to try this in Elsa (https://goto.ucsd.edu/elsa/index.html\#? demo=permalink\%2F1586465192_52175.lc)
sum

$$
n f x
$$

$$
(n_{z}^{\prime}, \underbrace{n+\ldots+1+0})
$$

$$
f_{0}\left(\begin{array}{l}
\backslash p \rightarrow \\
\quad \text { let } i=\text { EST } p \\
\\
\\
\\
\\
\text { PAT to tat (ADD ONE } i) \text { (HDD } i \text { ht })
\end{array}\right)
$$

$$
x_{0}=\text { PAIR ONE ZERO }
$$

$$
\operatorname{sum}=\ln _{n \rightarrow \sin \left(n f_{0} x_{0}\right)}
$$

A. Yes
B. No
(ADD $n($ SUM (DEC n)))

ZERO
You can write SUM using numerals but its tedious.
Is this a correct implementation of SUM ?
let $\operatorname{SUM}=\backslash n$-> ITE (ISZ n)
D. vo estes

No!

- Named terms in Elsa are just syntactic sugar
- To translate an Elsa term to λ-calculus: replace each name with its definition
\n -> ITE (ISZ n)
ZERO
(ADD $n(S U M(D E C n)))$-- But SUM is not yet defined!

Recursion:

- Inside this function
- Want to call the same function on DEC n

Looks like we can't do recursion!

- Requires being able to refer to functions by name,
- But λ-calculus functions are anonymous.

Right?

λ-calculus: Recursion

Think again!

Recursion:

$$
\begin{array}{r}
\text { SUM }=\begin{array}{r}
1 n \rightarrow(1 S z n) \\
\text { ZERO } \\
(\text { ADD } n(\text { sum }(\text { Oof } n))
\end{array}
\end{array}
$$

- Inside this function I want to call the same function on DEC n

Lets try

- Inside this function I want to call some function rec on DEC n
- And BTW, I want rec to be the same function
"bob"

Step 1: Pass in the function to call "recursively"

Step 2: Do some magic to STEP, so rec itself
\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))
That is, obtain a term MAGIC such that
MAGIC =*> STEP MAGIC

λ-calculus: Fixpoint Combinator

Wanted: a λ-term FIX such that

- FIX STEP calls STEP with FIX STEP as the first argument:
(FIX STEP) $=*>$ STEP (FIX STEP)
FIX STEP 三 STEP (FIXSER)
(In math: a fixpoint of a function $f(x)$ is a point x, such that $f(x)=x$)

$$
x \rightarrow f(x) \rightarrow f(f(x)) \cdots f^{\prime}(x)=f^{n+1}(x)
$$

Once we have it, we can define: SUM \longrightarrow STEP SUM
let SUM $=$ FIX STEP
Then by property of FIX we have:

$$
\text { SUM }=*>\text { FIX STEP }=*>\text { STEP (FIX STEP) }=*>\text { STEP SUM }
$$

and so now we compute:

```
eval sum_two:
    SUM TWO
    =*> STEP SUM TWO
    =*> ITE (ISZ TWO) ZERO (ADD TWO (SUM (DEC TWO)))
    =*> ADD TWO (SUM (DEC TWO))
    =*> ADD TWO (SUM ONE)
    =*> ADD TWO (STEP SUM ONE)
    =*> ADD TWO (ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE))))
    =*> ADD TWO (ADD ONE (SUM (DEC ONE)))
    =*> ADD TWO (ADD ONE (SUM ZERO))
    =*> ADD TWO (ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM DEC ZERO)))
    =*> ADD TWO (ADD ONE (ZERO))
    =*> THREE
```

How should we define FIX ???

The Y combinator

Remember Ω ?

```
(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> x x)
```

This is self-replcating code! We need something like this but a bit more involved...

The Y combinator discovered by Haskell Curry:

$$
\begin{aligned}
\text { let FIX }=\backslash \operatorname{stp} \rightarrow & (\mid x \rightarrow \operatorname{stp}(x x))(\mid x \rightarrow \operatorname{stp}(x x)) \\
& \text { FiX STEP } \rightarrow * \text { STEP (FIX STEP) }
\end{aligned}
$$

How does it work?

```
eval fix_step:
    FIX STEP
    =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
    =b> (\x -> STEP (x x )) (\x -> STEP (x x ))
    =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
    -- ^^^^^^^^^^^^ this is FIX STEP ^^^^^^^^^^^^
```

That's all folks, Haskell Curry was very clever.
Next week: We'll look at the language named after him (Haskell)
(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala) (https://plus.google.com/u/o/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

