Haskell Crash Course Part I

From the Lambda Calculus to Haskell

Programming in Haskell

Computation by Calculation

Substituting equals by equals

Computation via Substituting Equals by Equals



(1 +3)* (4 +05)

- subst 1 + 3 =4
==> 4 * (4 + 5)
/ -- subst 4 + 5 =9
==> 4 * 9
‘L - subst 4 * 9 = 36
==> 3 -

Computation via Substituting Equals by Equals

Equality-Substitution enables Abstraction via Pattern Recognition

udiiic

Abstraction via Pattern Recognition

Repeated Expressions

31 * (42 + 56)
70 * (12 + 95)
90 * (68 + 12)

Recognize Pattern as i-function

pat = \xyz ->x *(y+2z)

pat x g2 =X ¢ (y + 2)

”re/ac@o”g‘



Equivalent Haskell Definition

)
pat xvy z x *(y+2z)

<

Function Call is Pattern Instance

pat 31 42 56 =*> 31 * (42 + 56) =*> 31 * 98 =+*> 3038
pat 70 12 95 =*> 70 * (12 + 95) =*> 70 * 107 =*> 7490
pat 90 68 12 =*> 90 * (68 + 12) =*> 90 * 80 =+*> 7200

Key Idea: Computation is substitute equals by equals.

Programming in Haskell

Substitute Equals by Equals

Do nat-thiimco

Thats it! (Das: ofren ! TS aes

Elements of Haskell



wtiwt

bk douosite ) el NoZg
Expression I W Vadue TRINTEG

compile-time /
A /
Tﬁ pC 00 t
00O
 Core program element is an expression
o Every valid expression has a type (determined at compile-time)

90
e Every valid expression reduces to a value (computed at run-ime \/ 00
~_ > 2led | W -

I11-typed* expressions are rejected at compile-time before execution

e like in Java
e not like A-calculus or Python ...

The Haskell Eco-System

o Batch compiler: ghc Compile and run large programs

—

« Interactive Shell ghci Shell to interactively run small programs online

——

(https://repl.it/languages/haskell)

e Build Tool stack Build tool to manage libraries etc.



Interactive Shell: ghc1

$ stack ghci

:load file.hs
:type expression
:info variable

A Haskell Source File

A sequence of top-level definitions x1, x2, ...
o Each hastype type_1, type_2, ..

o Each defined by expression expr_1, expr_2, ...

_1 :: type_1 _— xt  has 4‘5{& ti
_ expr_1 yi = e'

=
1

X_2 :: type 2

X
N
1

expr_2



Basic Types

ex1l :: Int
31 * (42 + 56) -- this is a comment

ex1

ex2 :: Double

ex2 =3 * (4.2 + 5.6) -- arithmetic operators "overloaded"

ex3 :: Char

ex3 = 'a' --'a', 'b", 'c', etc. built-in ‘Char’ values
ex4 :: Bool

ex4 = True -- True, False are builtin Bool values

ex5 :: Bool

ex5 = False

QUIZ: Basic Operations

ex6 :: Int

ex6 =4 + 5
ex7 :: Int

ex?7T =4 * 5
ex8 :: Bool
ex8 =5>14
quiz :: 2727

quiz = if ex8 then ex6 else ex7

What is the type of quiz?

A. Int



B. Bool

C.Error!

QUIZ: Basic Operations

ex6 :: Int

ex6 =4 + 5
ex7 :: Int

ex7 =4 * 5
ex8 :: Bool
ex8 = 5> 4
quiz :: ???

quiz = if ex8 then ex6 else ex7
What is the value of quiz?

A 9

B. 20

C. Other!

Function Types



In Haskell, a function is a value that has a type

A ->B \\C'OM”

A function that

o takes input of type A
e returns output of type B

For example ﬁjp*”@“ﬂ — bj@ €

isPos :: Int -> Bool
isPos = \Q. -> (x > 0)

Define function-expressions using \ like in /-calculus!

But Haskell also allows us to put the parameter on the left

isPos :: Int -> Bool
isPos n = (x > 0)

(Meaning is identical to above definition with \n -> ...)

Multiple Argument Functions
A function that

o takes three inputs A1, A2 and A3
e returns one output B has the type

Al -> A2 -> A3 -> B
For example

pat :: Int -> Int -> Int -> Int
pat = \xy z -> x * (y + z)

which we can write with the params on the left as



pat :: Int -> Int -> Int -> Int
pat xy z =x * (y + z)

QUIZ

What is the type of quiz ?

C. Int -> Int -> Tnt

D. Int -> Int -> Bool Vv~

m, Int) -> Bool L Z

QUE = \X=>\4->

=

,—>

Ty

leA~

NG

Function Calls

A function call is exactly like in the 2-calculus

el e2

where el isafunction and e2 is the argument. For example



>>> i1sPos 12
True

>>> 1sPos (0 - 5)
False

Multiple Argument Calls

With multiple arguments, just pass them in one by one, e.g.
(((e el) e2) e3)
For example

>>> pat 31 42 56
3038

EXERCISE

Write a function myMax that returns the maximum of two inputs

myMax :: Int -> Int -> Int
myMax = 22?7

When you are done you should see the following behavior:



>>> myMax 10 20
20

>>> myMax 100 5
100

How to Return Multiple Outputs?

Tuples

A type for packing n different kinds of values into a single “struct”
(T1,..., Tn)

For example

tup2 :: (Char, Double, Int)
('a', 5.2, 7)

+
c
o
N
1



QUIZ

What is the type ??? of tup3?

A. (Int, Bool)

B. (Int, Double, Bool)
C. (Int, (Double, Bool))
D. ((Int, Double), Bool)

E. (Tuple, Bool)

Extracting Values from Tuples

We can create a tuple of three values el, e2,and e3 ...
tup = (el1, e2, e3)
... but how to extract the values from this tuple?

Pattern Matching



fst3 :: (t1, t2, t3) -> t1
fst3 (x1, x2, x3) = x1

snd3 :: (t1, t2, t3) -> t2
snd3 (x1, x2, x3) = x2

thd3 :: (t1, t2, t3) -> t3
thd3 (x1, x2, x3) = x3

QUIZ

What is the value of quiz defined as

tup2 :: (Char, Double, Int)
tup2 = ('a', 5.2, 7)

snd3 :: (t1, t2, t3) -> t2
snd3 (x1, x2, x3) = x2
quiz = snd3 tup2

A '3’

B. 5.2

C.7

D. ('a', 5.2)

E. (5.2, 7)



Lists

Unbounded Sequence of values of type T

[T]
For example

chars :: [Char]
chars = ['a','b','c']

ints :: [Int]
ints = [1,3,5,7]

pairs :: [(Int, Bool)]
pairs = [(1,True),(2,False)]

QUIZ

What is the type of things defined as

things :: 2?2?
thi-ngs = [ [1]: [2’ 3]: [4: 5, 6] ]

A. [Int]

B. ([Int], [Int], [Int])
C. [(Int, Int, Int)]

D. [[Int]]

E. List



List’s Values Must Have The SAME Type!

The type [T] denotes an unbounded sequence of values of type T

Suppose you have a list
oops = [1, 2, 'c']
Thereisno T that we can use

e Aslast elementisnot Int
¢ First two elements are not Char !

Result: Mysterious Type Error!

Constructing Lists

There are two ways to construct lists

[] -- creates an empty list
h:t -- creates a list with "head” 'h' and "tail" t

For example



>>> 3 &[]
[3]

>>>2: (3 :[])
[2, 3]

>>>1: (2 : (3 :[1)

[1, 2, 3]

Cons Operator : is Right Associative

X1 : X2 : x3 : x4 : tmeans x1 : (x2 : (x3 : (x4 : t)))

So we can just avoid the parentheses.

Syntactic Sugar

Haskell lets you write [x1, x2, x3, x4] insteadof x1 : x2 : x3 : x4 :

Functions Producing Lists

Lets write a function copy3 that

e takes aninput x and
e returns a list with three copies of x

copy3 :: ?27?
copy3 x = ?72?

When you are done, you should see the following

>>> copy3 5

[5, 5, 5]

>>> copy3 "cat"
["Cat“, "Cat“, llcatll]

[]



PRACTICE: Clone

Write a function clone such that clone n x returns alist with n copies of x.

clone :: ?2?

clone n x = 2?22
When you are done you should see the following behavior

>>> clone 0 "cat"

[]

>>> clone 1 "cat

["cat"]

>>> clone 2 "cat"
["Cat“’ "Cat“]

>>> clone 3 "cat"
["Cat“, "Cat“, "Cat“]

>>> clone 3 100
[100, 100, 100]



How does c lone execute?

(Substituting equals-by-equals!)

clone 3 100

=*> 277

EXERCISE: Range

Write a function range such that range i j returns thelist of values [1, 1+1, ..., j]

range :: ?7?7?

range 1 j = 7??

When we are done you should get the behavior



>>> range 4 3

[]

>>> range 3 3

[3]

>>> range 2 3
[2, 3]

>>> range 1 3
[1, 2, 3]

>>> range 0 3
[o, 1, 2, 3]

Functions Consuming Lists

So far: how to produce lists.

Next how to consume lists!



Example

Lets write a function firstElem such that firstElem xs returns the first element xs if it is

anon-empty list, and 0 otherwise.

firstElem :: [Int] -> Int
firstElem xs = 2??

When you are done you should see the following behavior:

>>> firstElem []
0

>>> firstElem [10, 20, 30]
10

>>> firstElem [5, 6, 7, 8]
5

QUIZ

Suppose we have the following mystery function

mystery :: [a] -> Int
mystery [] =0
mystery (x:xs) = 1 + mystery xs

What does mystery [10, 20, 30] evaluate to?
A. 10

B. 20



C. 30

EXERCISE: Summing a List

Write a function sumList such that sumList [x1, ..., xn] returns x1 + ... + xn

sumList :: [Int] -> Int
sumList = ?72?

When you are done you should get the following behavior:

>>> sumList []
0

>>> sumlist [3]
3

>>> sumlist [2, 3]
5

>>> sumlist [1, 2, 3]
6

Recap



run -time

Expresston — | Value

N/

 Core program element is an expression

o Every valid expression has a type (determined at compile-time)
o Every valid expression reduces to a value (computed at run-time)

Execution
 Basic values & operators
» Execution / Function Calls just substitute equals by equals
o Pack data into tuples & lists

e Unpack data via pattern-matching

(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher
(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-
progsys/liquidhaskell-blog/).



