
Haskell Crash Course Part II

Recap: Haskell Crash Course II

Core program element is an expression

Every valid expression has a type (determined at compile-time)

Every valid expression reduces to a value (computed at run-time)

Recap: Haskell
Basic values & operators

Int , Bool , Char , Double

+ , - , == , /=

Execution / Function Calls

Just substitute equals by equals

Producing Collections

Pack data into tuples & lists

Consuming Collections

Unpack data via pattern-matching

Next: Creating and Using New Data Types
1. type Synonyms: Naming existing types

2. data types: Creating new types

Type Synonyms
Synonyms are just names (“aliases”) for existing types

think typedef in C

A type to represent Circle
A tuple (x, y, r) is a circle with center at (x, y) and radius r

type Circle = (Double, Double, Double)

A type to represent Cuboid
A tuple (length, depth, height) is a cuboid

type Cuboid = (Double, Double, Double)

Using Type Synonyms
We can now use synonyms by creating values of the given types

circ0 :: Circle

circ0 = (0, 0, 100) -- ^ circle at "origin" with radius 100

cub0 :: Cuboid

cub0 = (10, 20, 30) -- ^ cuboid with length=10, depth=20, height=30

And we can write functions over synonyms too

area :: Circle -> Double

area (x, y, r) = pi * r * r

volume :: Cuboid -> Double

volume (l, d, h) = l * d * h

We should get this behavior

>>> area circ0

31415.926535897932

>>> volume cub0

6000

QUIZ
Suppose we have the definitions

type Circle = (Double, Double, Double)

type Cuboid = (Double, Double, Double)

circ0 :: Circle

circ0 = (0, 0, 100) -- ^ circle at "origin" with radius 100

cub0 :: Cuboid

cub0 = (10, 20, 30) -- ^ cuboid with length=10, depth=20, height=30

area :: Circle -> Double

area (x, y, r) = pi * r * r

volume :: Cuboid -> Double

volume (l, d, h) = l * d * h

What is the result of

>>> volume circ0

A. 0

B. Type error

Beware!
Type Synonyms

Do not create new types

Just name existing types

And hence, synonyms

Do not prevent confusing di!erent values

Creating New Data Types
We can avoid mixing up by creating new data types

-- | A new type `CircleT` with constructor `MkCircle`

data CircleT = MkCircle Double Double Double

-- | A new type `CuboidT` with constructor `MkCuboid`

data CuboidT = MkCuboid Double Double Double

Constructors are the only way to create values
MkCircle creates CircleT

MkCuboid creates CuboidT

QUIZ
Suppose we create a new type with a data definition

-- | A new type `CircleT` with constructor `MkCircle`

data CircleT = MkCircle Double Double Double

What is the type of the MkCircle constructor?

A. MkCircle :: CircleT

B. MkCircle :: Double -> CircleT

C. MkCircle :: Double -> Double -> CircleT

D. MkCircle :: Double -> Double -> Double -> CircleT

E. MkCircle :: (Double, Double, Double) -> CircleT

Constructing Data
Constructors let us build values of the new type

circ1 :: CircleT

circ1 = MkCircle 0 0 100 -- ^ circle at "origin" w/ radius 100

cub1 :: Cuboid

cub1 = MkCuboid 10 20 30 -- ^ cuboid w/ len=10, dep=20, ht=30

QUIZ
Suppose we have the definitions

data CuboidT = MkCuboid Double Double Double

type Cuboid = (Double, Double, Double)

volume :: Cuboid -> Double

volume (l, d, h) = l * d * h

What is the result of

>>> volume (MkCuboid 10 20 30)

A. 6000

B. Type error

Deconstructing Data
Constructors let us build values of new type … but how to use those values?

How can we implement a function

volume :: Cuboid -> Double

volume c = ???

such that

>>> volume (MkCuboid 10 20 30)

6000

Deconstructing Data by Pattern Matching
Haskell lets us deconstruct data via pattern-matching

volume :: Cuboid -> Double

volume c = case c of

 MkCuboid l d h -> l * d * h

case e of Ctor x y z -> e1 is read as as

IF - e evaluates to a value that matches the pattern Ctor vx vy vz

THEN - evaluate e1 after naming x := vx , y := vy , z := vz

Pattern matching on Function Inputs
Very common to do matching on function inputs

volume :: Cuboid -> Double

volume c = case c of

 MkCuboid l d h -> l * d * h

area :: Circle -> Double

area a = case a of

 MkCircle x y r -> pi * r * r

So Haskell allows a nicer syntax: patterns in the arguments

volume :: Cuboid -> Double

volume (MkCuboid l d h) = l * d * h

area :: Circle -> Double

area (MkCircle x y r) = pi * r * r

Nice syntax plus the compiler saves us from mixing up values!

But … what if we need to mix up values?
Suppose I need to represent a list of shapes

Some Circle s

Some Cuboid s

What is the problem with shapes as defined below?

shapes = [circ1, cub1]

Where we have defined

circ1 :: CircleT

circ1 = MkCircle 0 0 100 -- ^ circle at "origin" with radius 100

cub1 :: Cuboid

cub1 = MkCuboid 10 20 30 -- ^ cuboid with length=10, depth=20, height=30

Problem: All list elements must have the same type
Solution???

QUIZ: Variant (aka Union) Types
Lets create a single type that can represent both kinds of shapes!

data Shape

 = MkCircle Double Double Double -- ^ Circle at x, y with radius r

 | MkCuboid Double Double Double -- ^ Cuboid with length, depth, height

What is the type of MkCircle 0 0 100 ?

A. Shape

B. Circle

C. (Double, Double, Double)

Each Data Constructor of Shape has a di!erent
type
When we define a data type like the below

data Shape

 = MkCircle Double Double Double -- ^ Circle at x, y with radius r

 | MkCuboid Double Double Double -- ^ Cuboid with length, depth, height

We get multiple constructors for Shape

MkCircle :: Double -> Double -> Double -> Shape

MkCuboid :: Double -> Double -> Double -> Shape

Now we can create collections of Shape
Now we can define

circ2 :: Shape

circ2 = MkCircle 0 0 100 -- ^ circle at "origin" with radius 100

cub2 :: Shape

cub2 = MkCuboid 10 20 30 -- ^ cuboid with length=10, depth=20, height=30

and then define collections of Shape s

shapes :: [Shape]

shapes = [circ1, cub1]

EXERCISE
Lets define a type for 2D shapes

data Shape2D

 = MkRect Double Double -- ^ 'MkRect w h' is a rectangle with width 'w', he

ight 'h'

 | MkCirc Double -- ^ 'MkCirc r' is a circle with radius 'r'

 | MkPoly [Vertex] -- ^ 'MkPoly [v1,...,vn]' is a polygon with vertice

s at 'v1...vn'

type Vertex = (Double, Double)

Write a function to compute the area of a Shape2D

area2D :: Shape2D -> Double

area2D s = ???

HINT

Area of a polygon

You may want to use this helper that computes the area of a triangle at v1 , v2 , v3

areaTriangle :: Vertex -> Vertex -> Vertex -> Double

areaTriangle v1 v2 v3 = sqrt (s * (s - s1) * (s - s2) * (s - s3))

 where

 s = (s1 + s2 + s3) / 2

 s1 = distance v1 v2

 s2 = distance v2 v3

 s3 = distance v3 v1

distance :: Vertex -> Vertex -> Double

distance (x1, y1) (x2, y2) = sqrt ((x2 - x1) ** 2 + (y2 - y1) ** 2)

Polymorphic Data Structures
Next, lets see polymorphic data types

which contain many kinds of values.

mum
2 D

Vi V3Va F
V V2V3VyV5
V V3V2VyV5

Recap: Data Types
Recall that Haskell allows you to create brand new data types (03-haskell-types.html)

data Shape

 = MkRect Double Double

 | MkPoly [(Double, Double)]

QUIZ
What is the type of MkRect ?

data Shape

 = MkRect Double Double

 | MkPoly [(Double, Double)]

a. Shape

b. Double

c. Double -> Double -> Shape

d. (Double, Double) -> Shape

I
D

6,0 C D 12,43

e. [(Double, Double)] -> Shape

Tagged Boxes
Values of this type are either two doubles tagged with Rectangle

>>> :type (Rectangle 4.5 1.2)

(Rectangle 4.5 1.2) :: Shape

or a list of pairs of Double values tagged with Polygon

ghci> :type (Polygon [(1, 1), (2, 2), (3, 3)])

(Polygon [(1, 1), (2, 2), (3, 3)]) :: Shape

Data values inside special Tagged Boxes

Datatypes are Boxed-and-Tagged Values

Recursive Data Types
We can define datatypes recursively too

data IntList

 = INil -- ^ empty list

 | ICons Int IntList -- ^ list with "hd" Int and "tl" IntList

 deriving (Show)

(Ignore the bit about deriving for now.)

QUIZ
data IntList

 = INil -- ^ empty list

 | ICons Int IntList -- ^ list with "hd" Int and "tl" IntList

 deriving (Show)

What is the type of ICons ?

A. Int -> IntList -> List

B. IntList

C. Int -> IntList -> IntList

D. Int -> List -> IntList

E. IntList -> IntList

Constructing IntList
Can only build IntList via constructors.

>>> :type INil

INil:: IntList

>>> :type ICons

ICons :: Int -> IntList -> IntList

EXERCISE
Write down a representation of type IntList of the list of three numbers 1 , 2 and 3 .

list_1_2_3 :: IntList

list_1_2_3 = ???

Hint Recursion means boxes within boxes

Recursively Nested Boxes

Trees: Multiple Recursive Occurrences
We can represent Int trees like

data IntTree

 = ILeaf Int -- ^ single "leaf" w/ an Int

 | INode IntTree IntTree -- ^ internal "node" w/ 2 sub-trees

 deriving (Show)

A leaf is a box containing an Int tagged ILeaf e.g.

>>> it1 = ILeaf 1

>>> it2 = ILeaf 2

A node is a box containing two sub-trees tagged INode e.g.

>>> itt = INode (ILeaf 1) (ILeaf 2)

>>> itt' = INode itt itt

>>> INode itt' itt'

INode (INode (ILeaf 1) (ILeaf 2)) (INode (ILeaf 1) (ILeaf 2))

4

It 3 4

Multiple Branching Factors
e.g. 2-3 trees (http://en.wikipedia.org/wiki/2-3_tree)

data Int23T

 = ILeaf0

 | INode2 Int Int23T Int23T

 | INode3 Int Int23T Int23T Int23T

 deriving (Show)

An example value of type Int23T would be

i23t :: Int23T

i23t = INode3 0 t t t

 where t = INode2 1 ILeaf0 ILeaf0

which looks like

Integer 2-3 Tree

Parameterized Types
We can define CharList or DoubleList - versions of IntList for Char and Double as

data CharList

 = CNil

 | CCons Char CharList

 deriving (Show)

data DoubleList

 = DNil

 | DCons Char DoubleList

 deriving (Show)

Don’t Repeat Yourself!
Don’t repeat definitions - Instead reuse the list structure across all types!

Find abstract data patterns by

identifying the di!erent parts and

refactor those into parameters

A Refactored List
Here are the three types: What is common? What is di!erent?

data IList = INil | ICons Int IList

data CList = CNil | CCons Char CList

data DList = DNil | DCons Double DList

Common: Nil / Cons structure

Di!erent: type of each “head” element

Refactored using Type Parameter
data List a = Nil | Cons a (List a)

Recover original types as instances of List
type IntList = List Int

type CharList = List Char

type DoubleList = List Double

Polymorphic Data has Polymorphic Constructors
Look at the types of the constructors

>>> :type Nil

Nil :: List a

That is, the Empty tag is a value of any kind of list, and

>>> :type Cons

Cons :: a -> List a -> List a

Cons takes an a and a List a and returns a List a .

cList :: List Char -- list where 'a' = 'Char'

cList = Cons 'a' (Cons 'b' (Cons 'c' Nil))

iList :: List Int -- list where 'a' = 'Int'

iList = Cons 1 (Cons 2 (Cons 3 Nil))

dList :: List Double -- list where 'a' = 'Double'

dList = Cons 1.1 (Cons 2.2 (Cons 3.3 Nil))

Polymorphic Function over Polymorphic Data
Lets write the list length function

len :: List a -> Int

len Nil = 0

len (Cons x xs) = 1 + len xs

len doesn’t care about the actual values in the list - only “counts” the number of Cons

constructors

Hence len :: List a -> Int

we can call len on any kind of list.

>>> len [1.1, 2.2, 3.3, 4.4] -- a := Double

4

>>> len "mmm donuts!" -- a := Char

11

>>> len [[1], [1,2], [1,2,3]] -- a := ???

3

Built-in Lists?
This is exactly how Haskell’s “built-in” lists are defined:

data [a] = [] | (:) a [a]

data List a = Nil | Cons a (List a)

Nil is called []

Cons is called :

Many list manipulating functions e.g. in Data.List

(https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-List.html) are polymorphic -

Can be reused across all kinds of lists.

(++) :: [a] -> [a] -> [a]

head :: [a] -> a

tail :: [a] -> [a]

Generalizing Other Data Types
Polymorphic trees

data Tree a

 = Leaf a

 | Node (Tree a) (Tree a)

 deriving (Show)

Polymorphic 2-3 trees

data Tree23 a

 = Leaf0

 | Node2 (Tree23 a) (Tree23 a)

 | Node3 (Tree23 a) (Tree23 a) (Tree23 a)

 deriving (Show)

Kinds
List a corresponds to lists of values of type a .

If a is the type parameter, then what is List ?

A type-constructor that - takes as input a type a - returns as output the type List a

But wait, if List is a type-constructor then what is its “type”?

A kind is the “type” of a type.

>>> :kind Int

Int :: *

>>> :kind Char

Char :: *

>>> :kind Bool

Bool :: *

Thus, List is a function from any “type” to any other “type”, and so

>>> :kind List

List :: * -> *

QUIZ
What is the kind of -> ? That, is what does GHCi say if we type

>>> :kind (->)

A. *

B. * -> *

C. * -> * -> *

We will not dwell too much on this now.

As you might imagine, they allow for all sorts of abstractions over data.

If interested, see this for more information about kinds

(http://en.wikipedia.org/wiki/Kind_(type_theory)).

(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-

progsys/liquidhaskell-blog/).

Leaf a
7 T 1Node treea Treea

Ei

L

so Leys leafy
hey 5

