Recap: Haskell Crash Course II

- Core program element is an expression
- Every valid expression has a type (determined at compile-time)
- Every valid expression reduces to a value (computed at run-time)

Recap: Haskell

Basic values & operators

- Int, Bool, Char, Double
- +, -, ==, /=

Execution / Function Calls

- Just substitute equals by equals

Producing Collections

- Pack data into tuples & lists
Consuming Collections

- Unpack data via \textit{pattern-matching}

\textbf{Next: Creating and Using New Data Types}

1. \textbf{type} Synonyms: \textit{Naming} existing types

2. \textbf{data} types: \textit{Creating} new types

\textbf{Type Synonyms}

Synonyms are just names ("aliases") for existing types

- \texttt{think typedef} in C
A type to represent **Circle**

A tuple \((x, y, r)\) is a circle with center at \((x, y)\) and radius \(r\)

type Circle = (Double, Double, Double)

A type to represent **Cuboid**

A tuple \((\text{length}, \text{depth}, \text{height})\) is a cuboid

type Cuboid = (Double, Double, Double)
Using Type Synonyms

We can now use synonyms by creating values of the given types

circ0 :: Circle
circ0 = (0, 0, 100) -- ^ circle at "origin" with radius 100

cub0 :: Cuboid
cub0 = (10, 20, 30) -- ^ cuboid with length=10, depth=20, height=30

And we can write functions over synonyms too

area :: Circle -> Double
area (x, y, r) = pi * r * r

volume :: Cuboid -> Double
volume (l, d, h) = l * d * h

We should get this behavior

>>> area circ0
31415.926535897932

>>> volume cub0
6000

QUIZ

Suppose we have the definitions
type Circle = (Double, Double, Double)

type Cuboid = (Double, Double, Double)

circ0 :: Circle
circ0 = (0, 0, 100) -- ^ circle at "origin" with radius 100

cub0 :: Cuboid
cub0 = (10, 20, 30) -- ^ cuboid with length=10, depth=20, height=30

area :: Circle -> Double
area (x, y, r) = pi * r * r

volume :: Cuboid -> Double
volume (l, d, h) = l * d * h

What is the result of

```>>> volume circ0```

A. 0

B. Type error

Beware!

Type Synonyms

- Do not create new types
- Just name existing types

And hence, synonyms

- Do not prevent confusing different values
Creating New Data Types

We can avoid mixing up by creating new **data** types

```haskell
-- | A new type `CircleT` with constructor `MkCircle`
data CircleT = MkCircle Double Double Double

-- | A new type `CuboidT` with constructor `MkCuboid`
data CuboidT = MkCuboid Double Double Double
```

**Constructors are the only way to create values**

- MkCircle creates CircleT
- MkCuboid creates CuboidT

**QUIZ**

Suppose we create a new type with a **data** definition

```haskell
-- | A new type `CircleT` with constructor `MkCircle`
data CircleT = MkCircle Double Double Double
```

What is the **type of** the MkCircle **constructor**?
A. \texttt{MkCircle} :: \texttt{CircleT}

B. \texttt{MkCircle} :: \texttt{Double -> CircleT}

C. \texttt{MkCircle} :: \texttt{Double -> Double -> CircleT}

D. \texttt{MkCircle} :: \texttt{Double -> Double -> Double -> CircleT}

E. \texttt{MkCircle} :: (\texttt{Double, Double, Double}) -> \texttt{CircleT}

\begin{center}
\textbf{Constructing Data}
\end{center}

Constructors let us \textit{build} values of the new type

\texttt{circ1 :: CircleT}
\texttt{circ1 = MkCircle 0 0 100} \quad -- ^ \textit{circle at "origin" w/ radius 100}

\texttt{cub1 :: Cuboid}
\texttt{cub1 = MkCuboid 10 20 30} \quad -- ^ \textit{cuboid w/ len=10, dep=20, ht=30}

\begin{center}
\textbf{QUIZ}
\end{center}

Suppose we have the definitions
data CuboidT = MkCuboid Double Double Double

type Cuboid = (Double, Double, Double)

volume :: Cuboid -> Double
volume (l, d, h) = l * d * h

What is the result of

>>> volume (MkCuboid 10 20 30)

A. 6000
B. Type error

Deconstructing Data

Constructors let us build values of new type ... but how to use those values?

How can we implement a function

volume :: Cuboid -> Double
volume c = ???

such that

>>> volume (MkCuboid 10 20 30)
6000
Deconstructing Data by Pattern Matching

Haskell lets us *deconstruct* data via pattern-matching

\[
\text{volume} :: \text{Cuboid} \rightarrow \text{Double} \\
\text{volume} c = \text{case} \ c \ \text{of} \\
\quad \text{MkCuboid} \ l \ d \ h \rightarrow l \times d \times h
\]

case e of Ctor x y z -> e1 is read as as

**IF** - e evaluates to a value that *matches the pattern* Ctor vx vy vz

**THEN** - evaluate e1 after naming x := vx, y := vy, z := vz

---

Pattern matching on Function Inputs

Very common to do matching on function inputs

\[
\text{area} :: \text{Circle} \rightarrow \text{Double} \\
\text{area} a = \text{case} \ a \ \text{of} \\
\quad \text{MkCircle} \ x \ y \ r \rightarrow \pi \times r \times r
\]

So Haskell allows a nicer syntax: *patterns in the arguments*
volume :: Cuboid -> Double
volume (MkCuboid l d h) = l * d * h

area :: Circle -> Double
area (MkCircle x y r) = pi * r * r

Nice syntax plus the compiler saves us from mixing up values!

But ... what if we need to mix up values?

Suppose I need to represent a list of shapes

- Some Circles
- Some Cuboids

What is the problem with shapes as defined below?

shapes = [circ1, cub1]

Where we have defined

circ1 :: CircleT
circ1 = MkCircle 0 0 100 -- ^ circle at "origin" with radius 100

cub1 :: Cuboid
cub1 = MkCuboid 10 20 30 -- ^ cuboid with length=10, depth=20, height=30
Problem: All list elements must have the same type

Solution???

QUIZ: Variant (aka Union) Types

Lets create a single type that can represent both kinds of shapes!

```haskell
data Shape
 = MkCircle Double Double Double -- ^ Circle at x, y with radius r
 | MkCuboid Double Double Double -- ^ Cuboid with length, depth, height
```

What is the type of MkCircle 0 0 100 ?

A. Shape
B. Circle
C. (Double, Double, Double)

Each Data Constructor of Shape has a different type

When we define a data type like the below
data Shape
   = MkCircle Double Double Double -- ^ Circle at x, y with radius r
   | MkCuboid Double Double Double -- ^ Cuboid with length, depth, height

We get multiple constructors for Shape

MkCircle :: Double -> Double -> Double -> Shape
MkCuboid :: Double -> Double -> Double -> Shape

Now we can create collections of Shape

Now we can define

circ2 :: Shape
   circ2 = MkCircle 0 0 100 -- ^ circle at "origin" with radius 100

cub2 :: Shape
   cub2 = MkCuboid 10 20 30 -- ^ cuboid with length=10, depth=20, height=30

and then define collections of Shape s

shapes :: [Shape]
shapes = [circ1, cub1]

EXERCISE

Lets define a type for 2D shapes

data Shape2D
   = MkRect Double Double -- ^ 'MkRect w h' is a rectangle with width 'w', height 'h'
   | MkCirc Double -- ^ 'MkCirc r' is a circle with radius 'r'
   | MkPoly [Vertex] -- ^ 'MkPoly [v1,...,vn]' is a polygon with verites at 'v1...vn'

   type Vertex = (Double, Double)

Write a function to compute the area of a Shape2D
area2D :: Shape2D -> Double
area2D s = ???

HINT

Area of a polygon

You may want to use this helper that computes the area of a triangle at \( v_1, v_2, v_3 \)

\[
\text{areaTriangle} :: \text{Vertex} \rightarrow \text{Vertex} \rightarrow \text{Vertex} \rightarrow \text{Double}
\]

\[
\text{areaTriangle} \ v_1 \ v_2 \ v_3 = \sqrt{s \times (s - s_1) \times (s - s_2) \times (s - s_3))}
\]

where

\[
s = (s_1 + s_2 + s_3) / 2
\]

\[
s_1 = \text{distance} \ v_1 \ v_2
\]

\[
s_2 = \text{distance} \ v_2 \ v_3
\]

\[
s_3 = \text{distance} \ v_3 \ v_1
\]

distance :: Vertex -> Vertex -> Double
distance \ ((x_1, y_1)) \ ((x_2, y_2)) = \sqrt{(x_2 - x_1) ^ 2 + (y_2 - y_1) ^ 2)}

Polymorphic Data Structures

Next, lets see polymorphic data types

which contain many kinds of values.
Recap: Data Types

Recall that Haskell allows you to create brand new data types (03-haskell-types.html)

```haskell
data Shape
 = MkRect Double Double
 | MkPoly [(Double, Double)]
```

**QUIZ**

What is the type of `MkRect`?

- a. Shape
- b. Double
- c. Double -> Double -> Shape
- d. (Double, Double) -> Shape
Tagged Boxes

Values of this type are either two doubles tagged with Rectangle:

```haskell
>>> :type (Rectangle 4.5 1.2)
(Rectangle 4.5 1.2) :: Shape
```

or a list of pairs of Double values tagged with Polygon:

```haskell
ghci> :type (Polygon [(1, 1), (2, 2), (3, 3)])
(Polygon [(1, 1), (2, 2), (3, 3)]) :: Shape
```

Data values inside special Tagged Boxes

```
Rectangle
4.5 1.2
```
```
Polygon
[(1,1), (2,2), (3,3)]
```

Datatypes are Boxed-and-Tagged Values
**Recursive Data Types**

We can define datatypes *recursively* too.

```haskell
data IntList = INil -- ^ empty list
 | ICons Int IntList -- ^ list with "hd" Int and "tl" IntList

deriving (Show)
```

(Ignore the bit about `deriving` for now.)

---

**QUIZ**

```haskell
data IntList = INil -- ^ empty list
 | ICons Int IntList -- ^ list with "hd" Int and "tl" IntList

deriving (Show)
```

What is the type of `ICons`?

A. `Int -> IntList -> List`

B. `IntList`

C. `Int -> IntList -> IntList`

D. `Int -> List -> IntList`

E. `IntList -> IntList`
Constructing \textit{IntList}

Can only build \textit{IntList} via constructors.

\begin{verbatim}
>>> :type INil
INil : : IntList

>>> :type ICons
ICons : : Int -> IntList -> IntList
\end{verbatim}

\textbf{EXERCISE}

Write down a representation of type \textit{IntList} of the list of three numbers 1, 2 and 3.

\begin{verbatim}
list_1_2_3 :: IntList
list_1_2_3 = ???
\end{verbatim}

\textbf{Hint} Recursion means boxes \textit{within} boxes
Trees: Multiple Recursive Occurrences

We can represent Int trees like

```haskell
data IntTree
 = ILeaf Int -- ^ single "leaf" w/ an Int
 | INode IntTree IntTree -- ^ internal "node" w/ 2 sub-trees
 deriving (Show)
```

A leaf is a box containing an Int tagged ILeaf e.g.

```haskell
>>> it1 = ILeaf 1
>>> it2 = ILeaf 2
```

A node is a box containing two sub-trees tagged INode e.g.

```haskell
>>> itt = INode (ILeaf 1) (ILeaf 2)
>>> itt' = INode itt itt
>>> INode itt' itt'

```

```
INode (INode (ILeaf 1) (ILeaf 2)) (INode (ILeaf 1) (ILeaf 2))
```

```
\[\begin{array}{c}
\text{1}
\end{array} \begin{array}{c}
\text{2}
\end{array} \begin{array}{c}
\text{3}
\end{array} \begin{array}{c}
\text{4}
\end{array} \]
Multiple Branching Factors

e.g. 2-3 trees (http://en.wikipedia.org/wiki/2-3_tree)

data Int23T
 = ILeaf0
 | INode2 Int Int23T Int23T
 | INode3 Int Int23T Int23T Int23T
 deriving (Show)

An example value of type Int23T would be

\[
i23t :: \text{Int23T}
i23t = \text{INode3 } 0 \ t \ t \ t
\]
 where \(t = \text{INode2 } 1 \ \text{ILeaf0} \ \text{ILeaf0} \)

which looks like

![Integer 2-3 Tree Diagram]

Parameterized Types

We can define CharList or DoubleList - versions of IntList for Char and Double as
data CharList
 = CNil
 | CCons Char CharList
deriving (Show)

data DoubleList
 = DNil
 | DCons Char DoubleList
deriving (Show)

Don’t Repeat Yourself!

Don’t repeat definitions - Instead reuse the list structure across all types!

Find abstract data patterns by

- identifying the different parts and
- refactor those into parameters

A Refactored List

Here are the three types: What is common? What is different?
data IList = INil | ICons Int IList

data CList = CNil | CCons Char CList

data DList = DNil | DCons Double DList

Common: Nil/Cons structure

Different: type of each “head” element

Refactored using Type Parameter

data List a = Nil | Cons a (List a)

Recover original types as instances of List

type IntList = List Int
type CharList = List Char
type DoubleList = List Double

Polymorphic Data has Polymorphic Constructors

Look at the types of the constructors

>>> :type Nil
Nil :: List a

That is, the Empty tag is a value of any kind of list, and
>>> :type Cons
Cons :: a -> List a -> List a

Cons takes an a and a List a and returns a List a.

cList :: List Char -- list where 'a' = 'Char'
cList = Cons 'a' (Cons 'b' (Cons 'c' Nil))

iList :: List Int -- list where 'a' = 'Int'
iList = Cons 1 (Cons 2 (Cons 3 Nil))

dList :: List Double -- list where 'a' = 'Double'
dList = Cons 1.1 (Cons 2.2 (Cons 3.3 Nil))

Polymorphic Function over Polymorphic Data

Lets write the list length function

\[\text{len} :: \text{List} a -> \text{Int} \]

\[\text{len} \text{ Nil} = 0 \]

\[\text{len} \ (\text{Cons} \ x \ \text{xs}) = 1 + \text{len} \ \text{xs} \]

\[\text{len} \] doesn’t care about the actual values in the list – only “counts” the number of Cons constructors

Hence \text{len} :: \text{List} a -> \text{Int}

- we can call \text{len} on any kind of list.
>>> len [1.1, 2.2, 3.3, 4.4] -- a := Double
4

>>> len "mmm donuts!" -- a := Char
11

>>> len [[1], [1,2], [1,2,3]] -- a := ???
3

Built-in Lists?

This is exactly how Haskell’s “built-in” lists are defined:

```haskell
data [a] = [] | (:) a [a]
data List a = Nil | Cons a (List a)
```

- Nil is called []
- Cons is called :

Many list manipulating functions e.g. in Data.List (https://hackage.haskell.org/package/base-4.19.0.0/docs/Data-List.html) are polymorphic – Can be reused across all kinds of lists.

```haskell
(++) :: [a] -> [a] -> [a]
head :: [a] -> a
tail :: [a] -> [a]
```
Generalizing Other Data Types

Polymorphic trees

```haskell
data Tree a = Leaf a
             | Node (Tree a) (Tree a)
    deriving (Show)
```

Polymorphic 2–3 trees

```haskell
data Tree23 a = Leaf0
               | Node2 (Tree23 a) (Tree23 a)
               | Node3 (Tree23 a) (Tree23 a) (Tree23 a)
    deriving (Show)
```
Kinds

List a corresponds to lists of values of type a.

If a is the type parameter, then what is List?

A type-constructor that takes as input a type a - returns as output the type List a

But wait, if List is a type-constructor then what is its “type”?

- A kind is the “type” of a type.

>>> :kind Int
Int :: *

>>> :kind Char
Char :: *

>>> :kind Bool
Bool :: *

Thus, List is a function from any “type” to any other “type”, and so

>>> :kind List
List :: * -> *

QUIZ

What is the kind of - > ? That, is what does GHCi say if we type
>>> :kind (->)

A. *
B. * -> *
C. * -> * -> *

We will not dwell too much on this now.

As you might imagine, they allow for all sorts of abstractions over data.

If interested, see this for more information about kinds
(http://en.wikipedia.org/wiki/Kind__(type_theory)).