Bottling Computation Patterns

Polymorphism and Equational Abstractions are the Secret Sauce

Refactor arbitrary repeated code patterns ...

... into precisely specified and reusable functions

EXERCISE: Iteration

Write a function that squares a list of Int

```haskell
squares :: [Int] -> [Int]
squares ns = ???
```

When you are done you should see

```haskell
>>> squares [1,2,3,4,5]
[1,4,9,16,25]
```
Pattern: Iteration

Next, let's write a function that converts a String to uppercase.

```haskell
>>> shout "hello"
"HELLO"
```

Recall that in Haskell, a String is just a [Char].

```haskell
shout :: [Char] -> [Char]
shout = ???
```

Hoogle (http://haskell.org/hoogle) to see how to transform an individual Char

Iteration

Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA (http://www.livescience.com/health/070412__rhesus__monkeys.html)

Super common computation pattern!
Abstract Iteration “Pattern” into Function

Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental differences

```haskell
-- rename 'squares' to 'foo'
foo [] = []
foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'
foo [] = []
foo (x:xs) = (toUpper x) : foo xs
```

Step 2 Identify what is different

- In squares we transform \(x \) to \(x \times x \)
- In shout we transform \(x \) to \(\text{Data.Char.toUpper } x \)

Step 3 Make differences a parameter

- Make transform a parameter \(f \)

```haskell
foo f [] = []
foo f (x:xs) = (f x) : foo f xs
```

Done We have bottled the computation pattern as \(\text{foo} \) (aka \(\text{map} \))

```haskell
map f [] = []
map f (x:xs) = (f x) : map f xs
```

\(\text{map} \) bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle
QUIZ

What is the type of `map`?

```
map :: ???
map f []    = []
map f (x:xs) = (f x) : map f xs
```

A. `(Int -> Int) -> [Int] -> [Int]`

B. `(a -> a) -> [a] -> [a]`

C. `[a] -> [b]`

D. `(a -> b) -> [a] -> [b]`

E. `(a -> b) -> [a] -> [a]`

The type precisely describes `map`

```gh
>>> :type map
map :: (a -> b) -> [a] -> [b]
```

That is, `map` takes two inputs

- a `transformer` of type `a -> b`
- a `list` of values `[a]`

and it returns as output
• a list of values \([b]\)

that can only come by applying \(f\) to each element of the input list.

Reusing the Pattern

Lets reuse the pattern by *instantiating* the transformer

shout

--- OLD with recursion

\[
\text{shout} :: [\text{Char}] \rightarrow [\text{Char}]
\]

\[
\text{shout} [] = []
\]

\[
\text{shout} (x:xs) = \text{Char.toUpperCase} \ x : \text{shout} \ xs
\]

--- NEW with map

\[
\text{shout} :: [\text{Char}] \rightarrow [\text{Char}]
\]

\[
\text{shout} \ xs = \text{map} \ ??? \ xs
\]

squares

--- OLD with recursion

\[
\text{squares} :: [\text{Int}] \rightarrow [\text{Int}]
\]

\[
\text{squares} [] = []
\]

\[
\text{squares} \ (x:xs) = (x \times x) : \text{squares} \ xs
\]

--- NEW with map

\[
\text{squares} :: [\text{Int}] \rightarrow [\text{Int}]
\]

\[
\text{squares} \ xs = \text{map} \ ??? \ xs
\]
EXERCISE

Suppose I have the following type

```haskell
type Score = (Int, Int) -- pair of scores for Hw0, Hw1
```

Use `map` to write a function

```haskell```

```haskell```

such that

```haskell```

```haskell```

The Case of the Missing Parameter

Note that we can write `shout` like this

```haskell```

```haskell```

Huh. No parameters? Can someone explain?
The Case of the Missing Parameter

In Haskell, the following all mean the same thing

Suppose we define a function

```
add :: Int -> Int -> Int
add x y = x + y
```

Now the following all mean the same thing

```
plus x y = add x y
plus x   = add x
plus     = add
```

Why? equational reasoning! In general

```
foo x = e x
```

```markdown
-- is equivalent to
```
foo = e
```

as long as x doesn’t appear in e.

Thus, to save some typing, we omit the extra parameter.
**Pattern: Reduction**

Computation patterns are everywhere, let’s revisit our old `sumList`.

```haskell
sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = x + sumList xs
```

Next, a function that *concatenates* the *String*s in a list.

```haskell
catList :: [String] -> String
catList [] = ""
catList (x:xs) = x ++ (catList xs)
```

**Let’s spot the pattern!**

**Step 1** Rename

```haskell
foo [] = 0
foo (x:xs) = x + foo xs
```

```haskell
foo [] = ""
foo (x:xs) = x ++ foo xs
```

**Step 2** Identify what is *different*

1. ???
2. ???
Step 3 Make differences a parameter

```
foo p1 p2 [] = ???
foo p1 p2 (x:xs) = ???
```

---

**EXERCISE: Reduction/Folding**

This pattern is commonly called reducing or folding

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)
```

Can you figure out how `sumList` and `catList` are just instances of `foldr`?

```
sumList :: [Int] -> Int
sumList xs = foldr (?op) (?base) xs
```

```
catList :: [String] -> String
catList xs = foldr (?op) (?base) xs
```
Executing \textit{foldr}

To develop some intuition about \textit{foldr} let's "run" it a few times by hand.

\texttt{foldr \(op\) \(b\) (a1:a2:a3:a4:[])}

\[
\begin{align*}
\Rightarrow & \quad (\text{a1 `op` (foldr \(op\) \(b\) (a2:a3:a4:[]))}) \\
\Rightarrow & \quad (\text{a1 `op` (a2 `op` (foldr \(op\) \(b\) (a3:a4:[]))}) \\
\Rightarrow & \quad (\text{a1 `op` (a2 `op` (a3 `op` (foldr \(op\) \(b\) (a4:[])))))} \\
\Rightarrow & \quad (\text{a1 `op` (a2 `op` (a3 `op` (a4 `op` \(b\)))))}. \\
\end{align*}
\]

Look how it mirrors the structure of lists!

- (:) is replaced by \(op\)
- [] is replaced by \(base\)

So

\texttt{foldr (+) 0 (x1:x2:x3:x4:[])}

\[
\begin{align*}
\Rightarrow & \quad (x1 + (x2 + (x3 + (x4 + 0)))) \\
\end{align*}
\]

\[
\text{\texttt{map}} \quad \texttt{op} \quad \texttt{xs} = \texttt{case} \quad \texttt{xs} \quad \texttt{of} \\
\quad \texttt{nil} \rightarrow \texttt{nil} \\
\quad \texttt{(cons} \quad \texttt{h} \quad \texttt{t)} \rightarrow \texttt{cons} \quad \texttt{(op} \quad \texttt{h)} \quad \texttt{(map} \quad \texttt{op} \quad \texttt{t)}
\]

\textbf{Typing \textit{foldr}}

\[
\begin{align*}
\texttt{foldr} :: (a -> b -> b) -> b -> [a] -> b \\
\texttt{foldr \(op\) \(base\) [\(\)]} & \quad = \texttt{base} \\
\texttt{foldr \(op\) \(base\) (x:xs)} & \quad = \texttt{op} \quad \texttt{x} \quad (\texttt{foldr} \quad \texttt{op} \quad \texttt{base} \quad \texttt{xs}) \\
\end{align*}
\]

\texttt{foldr} takes as input
A reducer function of type \( a \rightarrow b \rightarrow b \)

a base value of type \( b \)

a list of values to reduce \([a]\)

and returns as output

a reduced value \( b \)

---

**QUIZ**

Recall the function to compute the \( \text{len} \) of a list

\[
\text{len} :: [a] \rightarrow \text{Int} \\
\text{len} [] = 0 \\
\text{len} (x:xs) = 1 + \text{len} xs
\]

Which of these is a valid implementation of \( \text{Len} \)

A. \( \text{len} = \text{foldr} (\_ \rightarrow n + 1) 0 \)

B. \( \text{len} = \text{foldr} (\_ n \rightarrow n + m) 0 \)

C. \( \text{len} = \text{foldr} (\_ n \rightarrow n + 1) 0 \)

D. \( \text{len} = \text{foldr} (\_ x xs \rightarrow 1 + \text{len} xs) 0 \)

E. All of the above
The Missing Parameter Revisited

We wrote `foldr` as

\[
\text{foldr} :: (a \to b \to b) \to b \to [a] \to b
\]
\[
\text{foldr} \ op \ \text{base} \ [] = \text{base}
\]
\[
\text{foldr} \ op \ \text{base} \ (x:xs) = \text{op} \ x \ (\text{foldr} \ op \ \text{base} \ xs)
\]

but can also write this

\[
\text{foldr} :: (a \to b \to b) \to b \to [a] \to b
\]
\[
\text{foldr} \ op \ \text{base} = \text{go}
\]
\[
\quad \text{where}
\]
\[
\quad \text{go} \ [] = \text{base}
\]
\[
\quad \text{go} \ (x:xs) = \text{op} \ x \ (\text{go} \ xs)
\]

Can someone explain where the \(xs\) went missing?

Trees

Recall the `Tree a` type from last time

\[
\text{data} \ \text{Tree} \ a
\]
\[
\quad = \text{Leaf}
\]
\[
\quad \mid \text{Node} \ a \ (\text{Tree} a) \ (\text{Tree} a)
\]

For example here's a tree
tree2 :: Tree Int
tree2 = Node 2 Leaf Leaf

tree3 :: Tree Int
tree3 = Node 3 Leaf Leaf

tree123 :: Tree Int
tree123 = Node 1 tree2 tree3

---

Some Functions on Trees

Lets write a function to compute the height of a tree:

height :: Tree a -> Int
height Leaf = 0
height (Node x l r) = 1 + max (height l) (height l)

Here's another to sum the leaves of a tree:

sumTree :: Tree Int -> Int
sumTree Leaf = ???
sumTree (Node x l r) = ???

Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]
toList Leaf = ???
toList (Node x l r) = ???

Lets give it a whirl
Pattern: Tree Fold

Can you spot the pattern? Those three functions are almost the same!

**Step 1:** Rename to maximize similarity

```haskell
-- height
foo Leaf = 0
foo (Node x l r) = 1 + max (foo l) (foo l)

-- sumTree
foo Leaf = 0
foo (Node x l r) = foo l + foo r

-- toList
foo Leaf = []
foo (Node x l r) = x : foo l ++ foo r
```

**Step 2:** Identify the differences

1. `max (foo l) (foo l)`
2. `x : foo l ++ foo r`

**Step 3** Make *differences* a parameter
Pattern: Folding on Trees

tFold op b Leaf = b
tFold op b (Node x l r) = op x (tFold op b l) (tFold op b r)

Lets try to work out the type of tFold!

tFold :: t_op -> t_b -> Tree a -> t_out

QUIZ

Suppose that t :: Tree Int.

What does tFold (\x y z -> y + z) 1 t return?

a. 0
b. the largest element in the tree t
c. the height of the tree t
d. the number of leaves of the tree \( t \)

e. type error

EXERCISE

Write a function to compute the largest element in a tree or 0 if tree is empty or all negative.

```
treeMax :: Tree Int -> Int
(treeMax t = tFold f b t
 where
 f = ???
 b = ???
```

Map over Trees

We can also write a `tmap` equivalent of `map` for `Tree`s

```
treeMap :: (a -> b) -> Tree a -> Tree b
(treeMap f (Leaf x) = Leaf (f x)
 treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)
```

which gives
```haskell
>>> treeMap (\n -> n * n) tree123 -- square all elements of tree
Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

EXERCISE

Recursion is HARD TO READ do we really have to use it?

Let's rewrite treeMap using tFold!

```haskell
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f t = tFold op base t
  where
    op     = ???
    base   = ???
```

When you are done, we should get

```haskell
>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hippo" Leaf Leaf)
>>> treeMap reverse animals
Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)
```

Examples: foldDir
data Dir a
 = Fil a -- ^ A single file named `a`
 | Sub a [Dir a] -- ^ A sub-directory name `a` with contents `[Dir a]`

data DirElem a
 = SubDir a -- ^ A single Sub-Directory named `a`
 | File a -- ^ A single File named `a`

foldDir :: ([a] -> r -> DirElem a -> r) -> r -> Dir a -> r
foldDir f r0 [Dir = go [] r0 dir
 where
 go stk r (Fil a) = f stk r (File a)
 go stk r (Sub a ds) = L.foldl' (go stk') r' ds
 where
 r' = f stk r (SubDir a)
 stk' = a:stk

foldDir takes as input

 - an accumulator f of type [a] -> r -> DirElem a -> r

 - takes as input the path [a], the current result r, the next DirElem [a]

 - and returns as output the new result r

 - an initial value of the result r0 and

 - directory to fold over dir

And returns the result of running the accumulator over the whole dir.

Examples: Spotting Patterns In The “Real” World

These patterns in “toy” functions appear regularly in “real” code

1. Start with beginner’s version riddled with explicit recursion (swizzle-v0.html).
2. Spot the patterns and eliminate recursion using HOFs (swizzle-v1.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without duplication (swizzle-v2.html).

Try it yourself

- Rewrite the code that swizzles Char to use the Map k v type in Data.Map

Which is more readable? HOFs or Recursion

At first, recursive versions of shout and squares are easier to follow

- fold takes a bit of getting used to!

With practice, the higher-order versions become easier

- only have to understand specific operations
- recursion is lower-level & have to see “loop” structure
- worse, potential for making silly off-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution (http://en.wikipedia.org/wiki/MapReduce)

- Can parallelize and distribute computation patterns just once (https://www.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf)
- Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or thousands of instances!