
Bottling Computation Patterns

Polymorphism and Equational Abstractions are the
Secret Sauce
Refactor arbitrary repeated code patterns …

… into precisely specified and reusable functions

EXERCISE: Iteration
Write a function that squares a list of Int

squares :: [Int] -> [Int]

squares ns = ???

When you are done you should see

>>> squares [1,2,3,4,5]

[1,4,9,16,25]

Pattern: Iteration
Next, lets write a function that converts a String to uppercase.

>>> shout "hello"

"HELLO"

Recall that in Haskell, a String is just a [Char] .

shout :: [Char] -> [Char]

shout = ???

Hoogle (http://haskell.org/hoogle) to see how to transform an individual Char

Iteration
Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA

(http://www.livescience.com/health/070412_rhesus_monkeys.html)

Super common computation pattern!

Abstract Iteration “Pattern” into Function
Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental di!erences

-- rename 'squares' to 'foo'

foo [] = []

foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] = []

foo (x:xs) = (toUpper x) : foo xs

Step 2 Identify what is di!erent

In squares we transform x to x * x

In shout we transform x to Data.Char.toUpper x

Step 3 Make di!erences a parameter

Make transform a parameter f

foo f [] = []

foo f (x:xs) = (f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map)

map f [] = []

map f (x:xs) = (f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

QUIZ
What is the type of map ?

map :: ???

map f [] = []

map f (x:xs) = (f x) : map f xs

A. (Int -> Int) -> [Int] -> [Int]

B. (a -> a) -> [a] -> [a]

C. [a] -> [b]

D. (a -> b) -> [a] -> [b]

E. (a -> b) -> [a] -> [a]

The type precisely describes map
>>> :type map

map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

a transformer of type a -> b

a list of values [a]

and it returns as output

a list of values [b]

that can only come by applying f to each element of the input list.

Reusing the Pattern
Lets reuse the pattern by instantiating the transformer

shout
-- OLD with recursion

shout :: [Char] -> [Char]

shout [] = []

shout (x:xs) = Char.toUpper x : shout xs

-- NEW with map

shout :: [Char] -> [Char]

shout xs = map (???) xs

squares
-- OLD with recursion

squares :: [Int] -> [Int]

squares [] = []

squares (x:xs) = (x * x) : squares xs

-- NEW with map

squares :: [Int] -> [Int]

squares xs = map (???) xs

EXERCISE
Suppose I have the following type

type Score = (Int, Int) -- pair of scores for Hw0, Hw1

Use map to write a function

total :: [Score] -> [Int]

total xs = map (???) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]

[30, 20, 43, 30]

The Case of the Missing Parameter
Note that we can write shout like this

shout :: [Char] -> [Char]

shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter
In Haskell, the following all mean the same thing

Suppose we define a function

add :: Int -> Int -> Int

add x y = x + y

Now the following all mean the same thing

plus x y = add x y

plus x = add x

plus = add

Why? equational reasoning! In general

foo x = e x

-- is equivalent to

foo = e

as long as x doesn’t appear in e .

Thus, to save some typing, we omit the extra parameter.

Pattern: Reduction
Computation patterns are everywhere lets revisit our old sumList

sumList :: [Int] -> Int

sumList [] = 0

sumList (x:xs) = x + sumList xs

Next, a function that concatenates the String s in a list

catList :: [String] -> String

catList [] = ""

catList (x:xs) = x ++ (catList xs)

Lets spot the pattern!
Step 1 Rename

foo [] = 0

foo (x:xs) = x + foo xs

foo [] = ""

foo (x:xs) = x ++ foo xs

Step 2 Identify what is di!erent

1. ???

2. ???

Step 3 Make di!erences a parameter

foo p1 p2 [] = ???

foo p1 p2 (x:xs) = ???

EXERCISE: Reduction/Folding
This pattern is commonly called reducing or folding

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

Can you figure out how sumList and catList are just instances of foldr ?

sumList :: [Int] -> Int

sumList xs = foldr (?op) (?base) xs

catList :: [String] -> String

catList xs = foldr (?op) (?base) xs

Executing foldr
To develop some intuition about foldr lets “run” it a few times by hand.

foldr op b (a1:a2:a3:a4:[])

==>

 a1 `op` (foldr op b (a2:a3:a4:[]))

==>

 a1 `op` (a2 `op` (foldr op b (a3:a4:[])))

==>

 a1 `op` (a2 `op` (a3 `op` (foldr op b (a4:[]))))

==>

 a1 `op` (a2 `op` (a3 `op` (a4 `op` foldr op b [])))

==>

 a1 `op` (a2 `op` (a3 `op` (a4 `op` b)))

Look how it mirrors the structure of lists!

(:) is replaced by op

[] is replaced by base

So

foldr (+) 0 (x1:x2:x3:x4:[])

==> x1 + (x2 + (x3 + (x4 + 0))

Typing foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

foldr takes as input

LULU
Canor b

map op us case as of
chains

Is Eggsmapopt

map Top Tx Tbody
t ListTh

Is I 41st
map into listin listt

Tbody List to map b list as listb

a reducer function of type a -> b -> b

a base value of type b

a list of values to reduce [a]

and returns as output

a reduced value b

QUIZ
Recall the function to compute the len of a list

len :: [a] -> Int

len [] = 0

len (x:xs) = 1 + len xs

Which of these is a valid implementation of Len

A. len = foldr (\n -> n + 1) 0

B. len = foldr (\n m -> n + m) 0

C. len = foldr (_ n -> n + 1) 0

D. len = foldr (\x xs -> 1 + len xs) 0

E. All of the above

The Missing Parameter Revisited
We wrote foldr as

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base [] = base

foldr op base (x:xs) = op x (foldr op base xs)

but can also write this

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr op base = go

 where

 go [] = base

 go (x:xs) = op x (go xs)

Can someone explain where the xs went missing ?

Trees
Recall the Tree a type from last time

data Tree a

 = Leaf

 | Node a (Tree a) (Tree a)

For example here’s a tree

tree2 :: Tree Int

tree2 = Node 2 Leaf Leaf

tree3 :: Tree Int

tree3 = Node 3 Leaf Leaf

tree123 :: Tree Int

tree123 = Node 1 tree2 tree3

Some Functions on Trees
Lets write a function to compute the height of a tree

height :: Tree a -> Int

height Leaf = 0

height (Node x l r) = 1 + max (height l) (height l)

Here’s another to sum the leaves of a tree:

sumTree :: Tree Int -> Int

sumTree Leaf = ???

sumTree (Node x l r) = ???

Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]

toList Leaf = ???

toList (Node x l r) = ???

Lets give it a whirl

>>> height tree123

2

>>> sumTree tree123

6

>>> toList tree123

[1,2,3]

Pattern: Tree Fold
Can you spot the pattern? Those three functions are almost the same!

Step 1: Rename to maximize similarity

-- height

foo Leaf = 0

foo (Node x l r) = 1 + max (foo l) (foo l)

-- sumTree

foo Leaf = 0

foo (Node x l r) = foo l + foo r

-- toList

foo Leaf = []

foo (Node x l r) = x : foo l ++ foo r

Step 2: Identify the di!erences

1. ???

2. ???

Step 3 Make di!erences a parameter

foo p1 p2 Leaf = ???

foo p1 p2 (Node x l r) = ???

Pattern: Folding on Trees
tFold op b Leaf = b

tFold op b (Node x l r) = op x (tFold op b l) (tFold op b r)

Lets try to work out the type of tFold !

tFold :: t_op -> t_b -> Tree a -> t_out

QUIZ
Suppose that t :: Tree Int .

What does tFold (\x y z -> y + z) 1 t return?

a. 0

b. the largest element in the tree t

c. the height of the tree t

d. the number-of-leaves of the tree t

e. type error

EXERCISE
Write a function to compute the largest element in a tree or 0 if tree is empty or all negative.

treeMax :: Tree Int -> Int

treeMax t = tFold f b t

 where

 f = ???

 b = ???

Map over Trees
We can also write a tmap equivalent of map for Tree s

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap f (Leaf x) = Leaf (f x)

treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)

which gives

>>> treeMap (\n -> n * n) tree123 -- square all elements of tree

Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

EXERCISE
Recursion is HARD TO READ do we really have to use it ?

Lets rewrite treeMap using tFold !

treeMap :: (a -> b) -> Tree a -> Tree b

treeMap f t = tFold op base t

 where

 op = ???

 base = ???

When you are done, we should get

>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hippo" Leaf Leaf)

>>> treeMap reverse animals

Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)

Examples: foldDir

Map reduce
90o'so 2004

Higher order fine

data Dir a

 = Fil a -- ^ A single file named `a`

 | Sub a [Dir a] -- ^ A sub-directory name `a` with contents `[Dir a]`

data DirElem a

 = SubDir a -- ^ A single Sub-Directory named `a`

 | File a -- ^ A single File named `a`

foldDir :: ([a] -> r -> DirElem a -> r) -> r -> Dir a -> r

foldDir f r0 dir = go [] r0 dir

 where

 go stk r (Fil a) = f stk r (File a)

 go stk r (Sub a ds) = L.foldl' (go stk') r' ds

 where

 r' = f stk r (SubDir a)

 stk' = a:stk

foldDir takes as input

an accumulator f of type [a] -> r -> DirElem a -> r

takes as input the path [a] , the current result r , the next DirElem [a]

and returns as output the new result r

an initial value of the result r0 and

directory to fold over dir

And returns the result of running the accumulator over the whole dir .

Examples: Spotting Patterns In The “Real” World
These patterns in “toy” functions appear regularly in “real” code

1. Start with beginner’s version riddled with explicit recursion (swizzle-v0.html).

D

directory

ine

2. Spot the patterns and eliminate recursion using HOFs (swizzle-v1.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without duplication (swizzle-

v2.html).

Try it yourself

Rewrite the code that swizzles Char to use the Map k v type in Data.Map

Which is more readable? HOFs or Recursion
At first, recursive versions of shout and squares are easier to follow

fold takes a bit of getting used to!

With practice, the higher-order versions become easier

only have to understand specific operations

recursion is lower-level & have to see “loop” structure

worse, potential for making silly o!-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution

(http://en.wikipedia.org/wiki/MapReduce)

Can parallelize and distribute computation patterns just once

(https://www.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf)

Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or thousands of

instances!

(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-

progsys/liquidhaskell-blog/).

