Bottling Computation Patterns

Polymorphism and Equational Abstractions are the
Secret Sauce

Refactor arbitrary repeated code patterns ...

... into precisely specified and reusable functions

EXERCISE: [teration

Write a function that squares a list of Int

squares :: [Int] -> [Int]
squares ns = ?77?

When you are done you should see

>>> squares [1,2,3,4,5]
[1,4,9,16,25]

Pattern: Iteration

Next, lets write a function that converts a String to uppercase.

>>> shout "hello"
"HELLO"

Recall that in Haskell, a String isjusta [Char].

shout :: [Char] -> [Char]
shout = 22?

Hoogle (http://haskell.org/hoogle) to see how to transform an individual Char

Iteration

Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA
(http://www.livescience.com/health/070412_ rhesus_ monkeys.html)

Super common computation pattern!

Abstract Iteration “Pattern” into Function

Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental differences

-- rename 'squares' to 'foo'

foo [] []

foo (x:xs) (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] =[]

foo (x:xs) = (toUpper x) : foo xs
Step 2 Identify what is different

e In squares we transform x to x * x

e In shout we transform x to Data.Char.toUpper x
Step 3 Make differences a parameter

o Make transform a parameter f

foo f []
foo f (x:xs)

[]
(f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map)

map f []
map f (x:xs)

[]
(f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

QUIZ

What is the type of map ?

3
[}
o
- ..
r~
e
1

[]

map f (x:xs) (f x) : map f xs

A. (Int -> Int) -> [Int] -> [Int]
B. (a -> a) -> [a] -> [a]

C. [a] -> [b]

D. (a -> b) -> [a] -> [b]

E. (a -> b) -> [a] -> [a]

The type precisely describes map

>>> :type map
map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

e atransformeroftype a -> b
e alist of values [a]

and it returns as output

e alist of values [b]

that can only come by applying f to each element of the input list.

Reusing the Pattern

Lets reuse the pattern by instantiating the transformer

shout

-- OLD with recursion

shout :: [Char] -> [Char]

shout [] =[]

shout (x:xs) = Char.toUpper x : shout xs

-- NEW with map
shout :: [Char] -> [Char]
shout xs = map (???) xs

squares

-- OLD with recursion

squares :: [Int] -> [Int]

squares [] =[]

squares (x:xs) = (x * x) : squares xs

-- NEW with map
squares :: [Int] -> [Int]
squares xs = map (?2??) xs

EXERCISE

Suppose I have the following type
type Score = (Int, Int) -- pair of scores for HwO, Hwl
Use map to write a function

total :: [Score] -> [Int]
total xs = map (???) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]
[30, 20, 43, 30]

The Case of the Missing Parameter

Note that we can write shout like this

shout :: [Char] -> [Char]
shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter

In Haskell, the following all mean the same thing

Suppose we define a function

add :: Int -> Int -> Int
add x y = x +y

Now the following all mean the same thing

plus x y = add x vy
plus x = add x
plus = add

Why? equational reasoning! In general

foo x = e X
-- is equivalent to

foo =e
as longas x doesn’t appearin e.

Thus, to save some typing, we omit the extra parameter.

Pattern: Reduction

Computation patterns are everywhere lets revisit our old sumList

sumList :: [Int] -> Int
sumList [] =0

sumList (x:xs) = X + sumList xs
Next, a function that concatenates the Stringsin alist

catList :: [String] -> String
catList [] = ""

catList (x:xs) = x ++ (catList xs)

Lets spot the pattern!

Step 1 Rename

foo [] =0

foo (x:xs) = x + foo xs
.Foo [] = nn

foo (x:xs) = x ++ foo xs

Step 2 Identify what is different
1. 72?

2. 277

Step 3 Make differences a parameter

foo p1 p2 [] ?72?

foo p1 p2 (x:xs) = 22?

EXERCISE: Reduction/Folding

This pattern is commonly called reducing or folding

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

Can you figure out how sumList and catList arejustinstances of foldr ?

sumList :: [Int] -> Int
sumList xs = foldr (?op) (?base) xs

catlList :: [String] -> String
catList xs = foldr (?op) (?base) xs

Executing foldr

To develop some intuition about foldr lets “run” it a few times by hand.

foldr op b (a1:a2:a3:a4:[])
==>
al ‘op’ (foldr op b (a2:a3:a4:[1]))
==>
al ‘op’ (a2 ‘op° (foldr op b (a3:a4:[]1)))
==>

al ‘op’ (a2 ‘op’ (a3 ‘op’ (foldr op b (a4:[1))))

==>

al ‘op” (a2 ‘op” (a3 ‘op’ (a4 ‘op’ foldr op b []1)))
==> Lt)
()
al ‘op” (a2 ‘op° (a3 ‘op’ (a4 ‘op° b))@ P b

M)Mrww lists! .

e (:) isreplaced by op
e [] isreplaced by base

So

foldr (+) 0 (x1:x2:x3:x4:[])
==> x1 + (x2 + (x3 + (x4 + 0))

map op @8 = cae 78 oF

Nil — ML
(bns W t) > (ong (0p h) (map P t)
7 4 5
7 TW - o
maP > 7;p —57;4—} /bod,y
—é - L/S{' Tp._

TXS — LI\SL' rh' map:: (Tha'L) - List T, 2 lyt T

Tody = Lris€ T, mapz @0 ~ Lt o > U3 b
° 0
%P - Thf_aTo

Typing foldr

foldr :: (@ ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

foldr takes as input

e areducer functionoftype a -> b -> b
e abase value of type b
e alist of values to reduce [a]

and returns as output

e areducedvalue b

QUIZ

Recall the function to compute the len of a list

len :: [a] -> Int
len [] =0
len (x:xs) =1 + len xs

Which of these is a valid implementation of Len

A. len = foldr (\n ->n + 1) 0
B. len = foldr (\n m ->n + m) O
C.len = foldr (_n ->n+1) 0

D. len = foldr (\x xs -> 1 + len xs) 0

E. All of the above

The Missing Parameter Revisited

We wrote foldr as

foldr :: (a -> b -> b)
foldr op base []
foldr op base (x:xs)

but can also write this

foldr :: (a -> b -> b)

foldr op base = go
where
go [] = base
go (X:xs) =

->b ->[a] -> b
base
op x (foldr op base xs)

->b ->[a] -> b

op X (go xs)

Can someone explain where the xs went missing ?

Trees

Recall the Tree a type from last time

data Tree a
= Leaf

| Node a (Tree a) (Tree a)

For example here’s a tree

tree2 :: Tree Int

tree2 = Node 2 Leaf Leaf
tree3 :: Tree Int
tree3 = Node 3 Leaf Leaf

treel23 :: Tree Int
treel23 = Node 1 tree2 tree3

Some Functions on Trees

Lets write a function to compute the height of a tree

height :: Tree a -> Int
height Leaf =0
height (Node x 1 r) = 1 + max (height 1) (height 1)

Here’s another to sum the leaves of a tree:

sumTree :: Tree Int -> Int
sumTree Leaf = ?27?

sumTree (Node x 1 r) = 22?
Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]
toList Leaf = ??7?
toList (Node x 1 r) = 222

Lets give it a whirl

>>> height treel23
2

>>> sumTree treel23
6

>>> tolList treel23
[1,2,3]

Pattern: Tree Fold

Can you spot the pattern? Those three functions are almost the same!

Step 1: Rename to maximize similarity

-- height
foo Leaf =0
foo (Node x 1 r) =1 + max (foo 1) (foo 1)

-- sumlree
foo Leaf =0
foo (Node x 1 r)

foo 1 + foo r

-- tolist
foo Leaf
foo (Node x 1 r)

[]

Xx : foo 1 ++ foo r

Step 2: Identify the differences

1. 227
2. 277

Step 3 Make differences a parameter

foo p1 p2 Leaf =222
foo p1 p2 (Node x 1 r) = 22?

Pattern: Folding on Trees

tFold op b Leaf =b
tFold op b (Node x 1 r) = op x (tFold op b 1) (tFold op b r)

Lets try to work out the type of tFold!

tFold :: t op -> t b -> Tree a -> t_out

QUIZ

Suppose that t :: Tree Int.

What does tFold (\x y z -> y + z) 1 t return?
a. 0

b. the largest element in the tree t

c. the height of the tree t

d. the number-of-leaves of the tree t

e. type error

EXERCISE

Write a function to compute the largest element in a tree or 0 if tree is empty or all negative.

treeMax :: Tree Int -> Int
treeMax t = tFold f b t
where
f = ?7?
b =777

Map over Trees

We can also write a tmap equivalent of map for Trees

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Node 1 r) = Node (treeMap f 1) (treeMap f r)

which gives

>>> treeMap (\n -> n * n) treel23 -- square all elements of tree
Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

EXERCISE

Recursion is HARD TO READ do we really have to use it ?

Lets rewrite treeMap using tFold !

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f t = tFold op base t
where
op =277
base = ?2?

When you are done, we should get

>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hippo" Leaf Leaf)
>>> treeMap reverse animals
Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)

17 Ir

Map freduse "o 2004
- /&?ﬁu O« 40 u(

Examples: foldDir

data Dir a

= Fil a -- 2 A single file named “a’
| Sub a [Dir a] -- A A sub-directory name ‘a‘ with contents ‘[Dir a]’
=
=

data DirElem a
= SubDir a -- ~ A single Sub-Directory named ‘a’
| File a - 2 A single File named ‘a’

|

foldDir :: ([a F__E
foldDir f r0

->r - i em a -

—_

->r ->Dir a ->r
—_—

r=go [] ro dir

AE

where Pa{‘{)\, - o - elewy Cuy V'Q)Q('('UT-@I@/'/
go stk r (Fil a) = f stk r (File a)
go stk r (Sub a ds) = L.foldl' (go stk') r' ds
where

r' f stk r (SubDir a)
stk' = a:stk J

—TFoldDir takes asinput

l

e an accumulator f oftype [a] -> r -> DirElem a ->r
o takes as input the path [a] , the current result r, the next DirElem [a]
o and returns as output the new result r

e aninitial value of the result r@ and

e directory to fold over dir

And returns the result of running the accumulator over the whole dir.

Examples: Spotting Patterns In The “Real” World

These patterns in “toy” functions appear regularly in “real” code

1. Start with beginner’s version riddled with explicit recursion (swizzle-vo.html).

2. Spot the patterns and eliminate recursion using HOFs (swizzle-vi.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without duplication (swizzle-

v2.html).
Try it yourself

o Rewrite the code that swizzles Char to usethe Map k v typein Data.Map

Which is more readable? HOFs or Recursion

At first, recursive versions of shout and squares are easier to follow
o fold takes abit of getting used to!
With practice, the higher-order versions become easier
 only have to understand specific operations
e recursion is lower-level & have to see “loop” structure
» worse, potential for making silly off-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution
(http://en.wikipedia.org/wiki/MapReduce)

e Can parallelize and distribute computation patterns just once
(https://www.usenix.org/event/osdio4/tech/full _papers/dean/dean.pdf)

o Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or thousands of

instances!

(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-

progsys/liquidhaskell-blog/).

