Bottling Computation Patterns

Polymorphism and Equational Abstractions are the Secret Sauce

Refactor arbitrary repeated code patterns ...
... into precisely specified and reusable functions

EXERCISE: Iteration

Write a function that squares a list of Int

```
squares :: [Int] -> [Int]
squares ns = ???
```

When you are done you should see
>>> squares $[1,2,3,4,5]$
[1,4,9,16,25]

Pattern: Iteration

Next, lets write a function that converts a String to uppercase.

```
>>> shout "hello"
```

"HELLO"

Recall that in Haskell, a String is just a [Char].

```
shout :: [Char] -> [Char]
shout = ???
```

Hoogle (http://haskell.org/hoogle) to see how to transform an individual Char

Iteration

Common strategy: iteratively transform each element of input list
Like humans and monkeys, shout and squares share 93% of their DNA (http://www.livescience.com/health/070412_rhesus_monkeys.html)

Super common computation pattern!

Abstract Iteration "Pattern" into Function

Remember D.R.Y. (Don't repeat yourself)
Step 1 Rename all variables to remove accidental differences

```
-- rename 'squares' to 'foo'
foo [] = []
foo (x:xs) = (x * x) : foo xs
-- rename 'shout' to 'foo'
foo [] = []
foo (x:xs) = (toUpper x) : foo xs
```

Step 2 Identify what is different

- In squares we transform x to x * x
- In shout we transform x to Data.Char.toUpper x

Step 3 Make differences a parameter

- Make transform a parameter f

```
foo f [] = []
foo f (x:xs) = (f x) : foo f xs
```

Done We have bottled the computation pattern as foo (aka map)

```
map f [] = []
map f (x:xs) = (f x) : map f xs
```

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

QUIZ

What is the type of map ?
map :: ???
map f [] $=$ []
map $f(x: x s)=(f x): \operatorname{map} f x$
A. (Int -> Int) -> [Int] -> [Int]
B. (a -> a) -> [a] -> [a]
C. [a] -> [b]
D. (a -> b) -> [a] -> [b]
E. (a -> b) -> [a] -> [a]

The type precisely describes map

```
>>> :type map
map :: (a -> b) -> [a] -> [b]
```

That is, map takes two inputs

- a transformer of type a -> b
- a list of values [a]
and it returns as output
- a list of values [b]
that can only come by applying f to each element of the input list.

Reusing the Pattern

Lets reuse the pattern by instantiating the transformer

shout

-- OLD with recursion
shout :: [Char] -> [Char]
shout [] $=$ []
shout (x:xs) = Char.toUpper x : shout xs
-- NEW with map
shout :: [Char] -> [Char]
shout xs = map (???) xs

squares

-- OLD with recursion
squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) $=(x * x)$: squares $x s$
-- NEW with map
squares :: [Int] -> [Int]
squares xs = map (???) xs

EXERCISE

Suppose I have the following type
type Score = (Int, Int) -- pair of scores for Hw0, Hw1
Use map to write a function
total :: [Score] -> [Int]
total xs = map (???) xs
such that
>>> total $[(10,20),(15,5),(21,22),(14,16)]$
[30, 20, 43, 30]

The Case of the Missing Parameter

Note that we can write shout like this

```
shout :: [Char] -> [Char]
shout = map Char.toUpper
```

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter

In Haskell, the following all mean the same thing
Suppose we define a function

```
add :: Int -> Int -> Int
add x y = x + y
```

Now the following all mean the same thing

```
plus x y = add x y
plus x = add x
plus = add
```

Why? equational reasoning! In general
foo $x=e x$
-- is equivalent to
foo $=e$
as long as \times doesn't appear in e.
Thus, to save some typing, we omit the extra parameter.

Pattern: Reduction

Computation patterns are everywhere lets revisit our old sumList

```
sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = x + sumList xs
```

Next, a function that concatenates the String s in a list

```
catList :: [String] -> String
catList [] = ""
catList (x:xs) = x ++ (catList xs)
```


Lets spot the pattern!

Step 1 Rename
foo [] $=0$
foo (x:xs) $=x+$ foo $x s$
foo [] = ""
foo (x:xs) $=x++$ foo $x s$

Step 2 Identify what is different

1. ???
2. ???

Step 3 Make differences a parameter
foo p1 p2 [] = ???
foo p1 p2 (x:xs) = ???

EXERCISE: Reduction/Folding

This pattern is commonly called reducing or folding

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)
```

Can you figure out how sumList and catList are just instances of foldr?

```
sumList :: [Int] -> Int
sumList xs = foldr (?op) (?base) xs
catList :: [String] -> String
catList xs = foldr (?op) (?base) xs
```


Executing fold

To develop some intuition about fold lets "run" it a few times by hand.

```
foldr op b (a1:a2:a3:a4:[])
```

==>
al `op` (folds op b (a2:a3:a4:[]))
$==>$
al `op` (az `op` (fold op b (a3:a4:[])))
==>
al `op` (az `op` (a3 `op` (folds op b (at:[]))))
==>
at `op` (az `op` (as `op` (at `op` fold op b [])))
$==>$ at `op` (at `op` (a3 `op` (at `op` b)) $)\left(a^{4} o p \quad b\right)$

Look how it mirror the structure of lists!

- (:) is replaced by op
- [] is replaced by base

So

$$
\begin{aligned}
& \text { fold (+) } 0(x 1: \times 2: x 3: x 4:[]) \\
& ==>x 1+(x 2+(x 3+(x 4+0))
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{map} \text { op } x s=\text { Case xs of } \\
& \text { Nil } \\
& \rightarrow \text { Nil } \\
&\left(\begin{array}{ccc}
T_{h} & h & t
\end{array}\right) \rightarrow \text { Cons } \underbrace{(\underbrace{}_{1} h}_{T_{0}})
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{map} & \therefore{ }^{7} T_{o p} \rightarrow T_{\lambda s} \rightarrow T_{\text {body }} \\
t & \because \text { List }_{n}
\end{aligned}
$$

$$
T_{x s}=\text { List } T_{n} \quad \text { map: }:\left(T_{n} \rightarrow T_{0}\right) \rightarrow \text { List } T_{n} \rightarrow \text { Lis }+T_{0}
$$

$$
T_{\text {body }}=\text { List } T_{0} \quad \text { map:: }(a \rightarrow b) \rightarrow \text { List } a \rightarrow \text { list } b
$$

$$
T_{o p}=T_{n} \rightarrow T_{0}
$$

Typing fold

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)
```

fold takes as input

- a reducer function of type a -> b -> b
- a base value of type b
- a list of values to reduce [a]
and returns as output
- a reduced value b

QUIZ

Recall the function to compute the len of a list

```
len :: [a] -> Int
len [] = 0
len (x:xs) = 1 + len xs
```

Which of these is a valid implementation of Len
A. len = foldr (\n -> $n+1$) 0
B. len = foldr (\n m -> n + m) 0
C. len = foldr (_ n-> $n+1$) 0
D. len = foldr (\x xs -> $1+$ len xs) 0
E. All of the above

The Missing Parameter Revisited

We wrote foldr as

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)
but can also write this
```

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr op base = go
    where
    go [] = base
    go ( \(\mathrm{x}: \mathrm{xs}\) ) \(=\mathrm{op} \mathrm{x}\) (go xs )
```

Can someone explain where the xs went missing ?

Trees

Recall the Tree a type from last time

```
data Tree a
    = Leaf
    | Node a (Tree a) (Tree a)
```

For example here's a tree

```
tree2 :: Tree Int
tree2 = Node 2 Leaf Leaf
tree3 :: Tree Int
tree3 = Node 3 Leaf Leaf
tree123 :: Tree Int
tree123 = Node 1 tree2 tree3
```


Some Functions on Trees

Lets write a function to compute the height of a tree

```
height :: Tree a -> Int
height Leaf = 0
height (Node x l r) = 1 + max (height l) (height l)
Here's another to sum the leaves of a tree:
```

```
sumTree :: Tree Int -> Int
sumTree Leaf = ???
sumTree (Node x l r) = ???
```

Gathers all the elements that occur as leaves of the tree:

```
toList :: Tree a -> [a]
toList Leaf = ???
toList (Node x l r) = ???
```

Lets give it a whirl

```
>>> height tree123
2
>>> sumTree tree123
6
>>> toList tree123
[1,2,3]
```


Pattern: Tree Fold

Can you spot the pattern? Those three functions are almost the same!
Step 1: Rename to maximize similarity
-- height
foo Leaf $=0$
foo (Node x l r) = $1+\max ($ foo l) (foo l)
-- sumTree
foo Leaf $=0$
foo (Node x l r) = foo llfoor
-- toList
foo Leaf $=$ []
foo (Node x l r) = x : foo $l++$ foo r
Step 2: Identify the differences

1. ???
2. ???
```
foo p1 p2 Leaf = ???
```

foo p1 p2 (Node x l r) = ???

Pattern: Folding on Trees

tFold op b Leaf $=\mathrm{b}$
tFold op b (Node x l r) = op x (tFold op bl) (tFold op br)
Lets try to work out the type of tFold!

```
tFold :: t_op -> t_b -> Tree a -> t_out
```


QUIZ

Suppose that t : : Tree Int.
What does tFold ($\backslash \mathrm{x} \mathrm{y}$ z -> $\mathrm{y}+\mathrm{z}$) 1 t return?
a. 0
b. the largest element in the tree t
c. the height of the tree t
d. the number-of-leaves of the tree t
e. type error

EXERCISE

Write a function to compute the largest element in a tree or 0 if tree is empty or all negative.

```
treeMax :: Tree Int -> Int
treeMax t = tFold f b t
    where
        f = ???
        b = ???
```


Map over Trees

We can also write a tmap equivalent of map for Tree s

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) = Leaf (f x)
treeMap f (Node l r) = Node (treeMap f l) (treeMap f r)
```

which gives

EXERCISE

Recursion is HARD TO READ do we really have to use it ?
Lets rewrite treeMap using tFold !

```
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f t = tFold op base t
    where
        op = ???
        base = ???
```

When you are done, we should get

```
>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hippo" Leaf Leaf)
>>> treeMap reverse animals
Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)
```


Examples: foldDir

foldDir takes as input

- an accumulator f of type [a] -> r -> DirElem a -> r
- takes as input the path [a], the current result r , the next DirElem [a]
- and returns as output the new result r
- an initial value of the result r0 and
- directory to fold over dir

And returns the result of running the accumulator over the whole dir.

Examples: Spotting Patterns In The "Real" World

These patterns in "toy" functions appear regularly in "real" code

1. Start with beginner's version riddled with explicit recursion (swizzle-vo.html).
2. Spot the patterns and eliminate recursion using HOFs (swizzle-v1.html).
3. Finally refactor the code to "swizzle" and "unswizzle" without duplication (swizzlev2.html).

Try it yourself

- Rewrite the code that swizzles Char to use the Map k v type in Data.Map

Which is more readable? HOFs or Recursion

At first, recursive versions of shout and squares are easier to follow

- fold takes a bit of getting used to!

With practice, the higher-order versions become easier

- only have to understand specific operations
- recursion is lower-level \& have to see "loop" structure
- worse, potential for making silly off-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution (http://en.wikipedia.org/wiki/MapReduce)

- Can parallelize and distribute computation patterns just once (https://www.usenix.org/event/osdio4/tech/full_papers/dean/dean.pdf)
- Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or thousands of instances!
(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala) (https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

