
Haskell Crash Course III - IO

Writing Applications
Lets write the classic “Hello world!” program.

For example, in Python you may write:

def main():

 print "hello, world!"

main()

and then you can run it:

$ python hello.py

hello world!

Haskell is a Pure language.
Not a value judgment, but a precise technical statement:

The “Immutability Principle”:

A function must always return the same output for a given input

A function’s behavior should never change

No Side E!ects

Haskell’s most radical idea: expression =*> value

When you evaluate an expression you get a value and

Nothing else happens

Specifically, evaluation must not have an side e!ects

change a global variable or

print to screen or

read a file or

send an email or

launch a missile.

But… how to write “Hello, world!”
But, we want to …

print to screen

read a file

send an email

Thankfully, you can do all the above via a very clever idea: Recipe

Recipes
This analogy is due to Joachim Brietner

(https://www.seas.upenn.edu/~cis194/fall16/lectures/06-io-and-monads.html)

Haskell has a special type called IO – which you can think of as Recipe

type Recipe a = IO a

A value of type Recipe a

is a description of a computation that can have side-e!ects

which when executed performs some e!ectful I/O operations

to produce a value of type a .

Recipes have No Side E!ects
A value of type Recipe a is

A description of a computation that can have side-e!ects

Cake vs. Recipe

(L) chocolate cake, (R) a sequence of instructions on how to make a cake.

They are di!erent (Hint: only one of them is delicious.)

Merely having a Recipe Cake has no e!ects! The recipe

Does not make your oven hot

Does not make your your floor dirty

Only One Way to Execute Recipes
Haskell looks for a special value

main :: Recipe ()

The value associated with main is handed to the runtime system and executed

Baker Aker

The Haskell runtime is a master chef who is the only one allowed to cook!

How to write an App in Haskell
Make a Recipe () that is handed o! to the master chef main .

main can be arbitrarily complicated

composed of smaller sub-recipes

A Recipe to Print to Screen
putStrLn :: String -> Recipe ()

The function putStrLn

takes as input a String

returns as output a Recipe ()

putStrLn msg is a Recipe () - when executed prints out msg on the screen.

main :: Recipe ()

main = putStrLn "Hello, world!"

… and we can compile and run it

$ ghc --make hello.hs

$./hello

Hello, world!

QUIZ: How to Print Multiple Things?
Suppose I want to print two things e.g.

$ ghc --make hello.hs

$./hello2

Hello!

World!

Can we try to compile and run this:

main = (putStrLn "Hello!", putStrLn "World!")

A. Yes!

B. No, there is a type error!

C. No, it compiles but produces a di!erent result!

A Collection of Recipes
Is just … a collection of Recipes!

recPair :: (Recipe (), Recipe ())

recPair = (putStrLn "Hello!", putStrLn "World!")

recList :: [Recipe ()]

recList = [putStrLn "Hello!", putStrLn "World!"]

… we need a way to combine recipes!

Combining? Just do it!
We can combine many recipes into a single one using a do block

foo :: Recipe a3

foo = do r1 -- r1 :: Recipe a1

 r2 -- r2 :: Recipe a2

 r3 -- r3 :: Recipe a3

(or if you prefer curly braces to indentation)

foo = do { r1; -- r1 :: Recipe a1

 r2; -- r2 :: Recipe a2

 r3 -- r3 :: Recipe a3

 }

The do block combines sub-recipes r1 , r2 and r3 into a new recipe that

Will execute each sub-recipe in sequence and

Return the value of type a3 produced by the last recipe r3

Combining? Just do it!
So we can write

main = do putStrLn "Hello!"

 putStrLn "World!"

or if you prefer

main = do { putStrLn "Hello!";

 putStrLn "World!"

 }

EXERCISE: Combining Many Recipes
Write a function called sequence that

Takes a non-empty list of recipes [r1,...,rn] as input and

Returns a single recipe equivalent to do {r1; ...; rn}

sequence :: [Recipe a] -> Recipe a

sequence rs = ???

When you are done you should see the following behavior

-- Hello.hs

main = sequence [putStrLn "Hello!", putStrLn "World!"]

and then

$ ghc --make Hello.hs

$./hello

Hello!

World!

Using the Results of (Sub-) Recipes
Suppose we want a function that asks for the user’s name

$./hello

What is your name?

Ranjit # <<<<< user enters

Hello Ranjit!

We can use the following sub-recipes

-- | read and return a line from stdin as String

getLine :: Recipe String

-- take a string s, return a recipe that prints s

putStrLn :: String -> Recipe ()

But how to

Combine the two sub-recipes while

Passing the result of the first sub-recipe to the second.

Naming Recipe Results via “Assignment”
You can write

x <- recipe

to name the result of executing recipe

x can be used to refer to the result in later code

Naming Recipe Results via “Assignment”
Lets, write a function that asks for the user’s name

main = ask

ask :: Recipe ()

ask = do name <- getLine;

 putStrLn ("Hello " ++ name ++ "!")

Which produces the desired result

$./hello

What is your name?

Ranjit # user enters

Hello Ranjit!

EXERCISE
Modify the above code so that the program repeatedly asks for the users’s name until they

provide a non-empty string.

-- Hello.hs

main = repeatAsk

repeatAsk :: Recipe ()

repeatAsk = _fill_this_in

isEmpty :: String -> Bool

isEmpty s = length s == 0

When you are done you should get the following behavior

$ ghc --make hello.hs

$./hello

What is your name?

user hits return

What is your name?

user hits return

What is your name?

user hits return

What is your name?

Ranjit # user enters

Hello Ranjit!

EXERCISE
Modify your code to also print out a count in the prompt

$ ghc --make hello.hs

$./hello

(0) What is your name?

 # user hits return

(1) What is your name?

 # user hits return

(2) What is your name?

 # user hits return

(3) What is your name?

Ranjit # user enters

Hello Ranjit!

That’s all about IO
You should be able to implement build from Directory.hs

Using these library functions imported at the top of the file

import System.FilePath (takeDirectory, takeFileName, (</>))

import System.Directory (doesFileExist, listDirectory)

The functions are

takeDirectory

takeFileName

(</>)

doesFileExist

listDirectory

hoogle the documentation to learn about how to use them.

(https://ucsd-cse230.github.io/fa23/feed.xml) (https://twitter.com/ranjitjhala)

(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher

(http://lucumr.pocoo.org), suggest improvements here (https://github.com/ucsd-

progsys/liquidhaskell-blog/).

