Lambda Calculus

Your Favorite Language

Probably has lots of features:

- Assignment (x = x + 1)
- Booleans, integers, characters, strings, ... mays
- Conditionals
- Loops
- return, break, continue
- Functions 🗸
- Recursion
- References / pointers
- Objects and classes
- Inheritance
- ..

Which ones can we do without?

What is the smallest universal language?

CANVAS
- github USER

GITHUB - do assignment 00-lambde

What is computable?

Before 1930s

Informal notion of an **effectively calculable** function:

172	
32)5512	
231 224	
72	
72 64 8	

can be computed by a human with pen and paper, following an algorithm

1936: Formalization

What is the **smallest universal language**?

21 yrs

Alan Turing

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus.

Peter Landin, 1966

The Lambda Calculus

Has one feature:

Functions

No, really

- Assignment (x = x + 1)
- Booleans, integers, characters, strings, ...
- Conditionals
- Loops
- return, break, continue
- Functions
- Recursion
- References / pointers

- Objects and classes
- Inheritance
- Reflection

More precisely, only thing you can do is:

- **Define** a function
- Call a function

Describing a Programming Language

- Syntax: what do programs look like?
- Semantics: what do programs mean?

Operational semantics: how do programs execute step-by-step?

Syntax: What Programs Look Like

Programs are **expressions** e (also called λ **-terms**) of one of three kinds:

Variable

 \circ x,y,z

- **Abstraction** (aka *nameless* function definition)
 - (X=) e) ∘ \x -> e

 - (x) is the formal parameter (e) is the body
 "for any x compute e" function (x) { return e}
- **Application** (aka function call)
 - ∘ e1 e2
 - e1 is the function, e2 is the argument
 - in your favorite language: e1(e2)

(Here each of e, e1, e2 can itself be a variable, abstraction, or application)

Examples

function (2) & return 23

-- The identity function
-- ("for any x compute x") (x -> (y -> y)) -- A function that returns the identity function

$$QUIZ$$

$$e := x \mid x \rightarrow e \mid (e, e_z)$$

Which of the following terms are syntactically incorrect?

SNOT valid LC exprs

D. A and C

E. all of the above

$$\begin{array}{c} (\chi \rightarrow (\chi y) \chi) \\ \chi \rightarrow (\chi y) \chi) \\ ((\chi y) \chi) \\ ((\chi y) \chi) \\ \chi \rightarrow (\chi y) \chi \\ \chi \rightarrow (\chi y)$$

Examples

\x -> x

$$f \rightarrow f (x \rightarrow x) -- A function that applies its argument$$

-- The identity function

-- to the identity function

How do I define a function with two arguments?

• e.g. a function that takes x and y and returns y?

takes input a seond fuct
returns a seond fuct
yearins input y
return y. -- A function that returns the identity function -- OR: a function that takes two arguments -- and returns the second one! "call with 2 mputs"

To see & coult

 $(x \rightarrow (y \rightarrow y))$ function (x) { return (y) { return (y)}

• e.g. apply $\x -> (\y -> y)$ to apple and banana?

$$(((x -> (y -> y)) apple) banana) -- first apply to apple,$$

-- then apply the result to banana

Syntactic Sugar

instead of	we write		
\x -> (\y -> (\z -> e))	\x -> \y -> \z -> e	\ X	42-> e
\x -> \y -> \z -> e	\x y z -> e		
(((e1 e2) e3) e4)	(e1 e2)e3)e4)		

```
\x y -> y -- A function that that takes two arguments -- and returns the second one...
```

(\x y -> y) apple banana -- ... applied to two arguments

Semantics: What Programs Mean

How do I "run" / "execute" a λ -term?

Think of middle-school algebra:

$$(2+3) \times (9-4)$$
 $(2+3) \times 5$
 $(2+3) \times 5$

Execute = rewrite step-by-step following simple rules, until no more rules apply

Rewrite Rules of Lambda Calculus

1. α -step (aka renaming formals) 2. β -step (aka function call)

But first we have to talk about scope

Semantics: Scope of a Variable

The part of a program/where a variable is visible

In the expression (x) -> e

• x is the newly introduced variable

• e is the scope of x

• any occurrence of x in $\xspace x$ in $\xspace x$ -> e is **bound** (by the **binder** $\xspace x$)

function (x) { // some x }

For example, x is bound in:

An occurrence of x in e is **free** if it's *not bound* by an enclosing abstraction

For example, x is free in:

- C. first occurrence is bound, second is free
 - D. first occurrence is bound, second and third are free
 - E. first two occurrences are bound, third is free

Free Variables

An variable x is **free** in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

Closed Expressions

If e has no free variables it is said to be closed

• Closed expressions are also called **combinators**

What is the shortest closed expression?

X>Z

Rewrite Rules of Lambda Calculus

Semantics: β -Reduction $(X \rightarrow e_1)$ e_2

Computation by search-and-replace:

- If you see an *abstraction* applied to an *argument*, take the *body* of the abstraction and replace all free occurrences of the *formal* by that *argument*
- We say that ($x \rightarrow e1$) e2 β -steps to e1[x := e2]

(
$$(x\rightarrow x)$$
 apple = b> apple
forma e, e₂ e₁ ($x:=e_2$)
($(x\rightarrow (y\rightarrow y))$ apple) banana
= b> $(y\rightarrow y)$ banana
= b> $(y\rightarrow y)$ banana
= b> banana

Examples

$$(\x -> x)$$
 apple =b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

$$(\f -> f (\x -> x)) (give apple)$$

$$=b>???$$

$$(\x \to (\y \to y)) apple & (\y \to y)$$

$$(\y \to (\y \to y)) apple & ???$$

$$(\x \to e,) e_1 & e_1 [x := e_1]$$

$$(\y \to apple \to$$

C. $\x -> apple$

 $B. \ y \rightarrow apple$