Lambda Calculus

Your Favorite Language

Probably has lots of features:

e Assignment(x = x + 1) e

. Booleans integers, characters, strlngs ANe
. Condltlonals N o
e Loops v

. returnfbreak,/continue o
o Functions «~

e Recursion /

o References / pointers //

¢ Objects and classes

o Inheritance

Which ones can we do without?

What is the smallest universal language?

CMUVKS
- gﬂm{b User

< Girdob

- oo assigmmut
OO.—[WLO(I:

| CING MACH(NE
What is computable? /W/ér’—

Before 1930s

Informal notion of an effectively calculable function:

172
3252?12

231
224

72
&4
b2

can be computed by a human with pen and paper, following an algorithm

1936: Formalization

What is the smallest universal language?

21 yrs

Alan Turing

The Next 700 Languages

Peter Landin

Whatever the next 700 languages turn out to be, they will surely be variants of
lambda calculus.

Peter Landin, 1966

The Lambda Calculus

Has one feature:

No, really

o Assignment{ x—=—x——%2)}

More precisely, only thing you can do is:

¢ Define a function

Describing a Programming L
» Syntax: what do progra @ S N mx .
« Semantics: what do SEMANT LS

o Operational semantics: how do programs execute step-by-step?

—

Syntax: What Programs Look Like

&
\\\e ::=@/ ,eunl-
Q,mch'm(')c)irfh)m e§| 7\x -> e?

e (ez) [|(e1 e2) &GN

JariedHs

Programs are expressions e (also called i-terms) of one of three kinds:
R

¢ Variable

Ox’y)z

o Abstraction (aka nameless function definition)

[} \X -> e (X =2 8)
o @is the formal parameter@is the body
o “forany x compute e” chhh., () Zre,ﬁ[I 63

¢ Application (aka function call)

o 313 the function, e2 is the argument

o inyour favorite language: el(e2)
"

(Here each of e, el, e2 can itself be a variable, abstraction, or application)

Examples

QAM.HS"\ (2) %’“f’/h’“’“ %z

\Xx -> X -- The identity function

. - -- ("for any x compute x")
J
W> (\y ->y) -- A function that returns the identity function
F
\f -> f (\x -> x) -- A function that applies its argument

- to the identity function

P\mchm (=) % return (ﬁmch‘m(ﬂ) ¢ rehuim j%>»§

e =x |
QUIZ

Which of the following terms are syntactically incorrect?

ANOK > %) >y)NOT valid L eyprs

[I—

o Lﬂ ~oe)

D. Aand}/

C. \x ->

E. all of the above

.\1
Examples
\X -> X -- The identity function

-- ("for any x compute x")
\x -> (\y ->vy) -- A function that returns the identity function
\f -> f (\x -> x) -- A function that applies its argument

-- to the identity function

How do I define a function with two arguments?

e e.g. afunction that takeg x Jand’ y and returns/y ?

\x -> (\y ->vy) -- A function that returns the identity function
R -- OR: a function that takes two arguments
-- and returns the second one!
\]) &

)
"opll vkt 2 apuls

o see (W@W{f“
e

How do I apply a function to two arguments?

e e.g.apply \x -> (\y -> y) to apple and banana?

(((\x -> (\y ->vy)) apple) banana) -- first apply to apple,
-- then apply the result to banana

Syntactic Sugar

instead of we write

\x -> (\y -> (\z ->e)) \x->\y->\z->e

\x ->\y ->\z ->e \xyz->e
(((e1 e2) e3) e4) el e2)e3)ed
\ Xy ->y -- A function that that takes two arguments

-- and returns the second one...

(\x y ->y) apple banana -- ... applied to two arguments

Semantics : What Programs Mean

How doI “run” / “execute” a A-term?

Think of middle-school algebra:

-- Simplify expression:

(x + 2)*(3*x - 1)

222

Execute = rewrite step-by-step following simple rules, until no-morerules apply

Rewrite Rules of Lambda Calculus

©

®

1. a-step (aka renaming formals)
2. f-step (aka function call)

But first we have to talk about scope

Q unth e @j D) %
/) (50
The part of a program/where a variable is visible / @ D V

) 1" chfe @ K)‘j I
/,f;
Inth ; /V"llilélllll ;E;
n the expressio @

o X isthe newly introduced variable @
choewv (X %

¢ e isthe scope of x

Semantics: Scope of a Variable

 any occurrence of x in \x -> e is bound (by the binder \x)
= = ——

For example, x is bound in:

o

\x_-> (\y ->x)

An occurrence of x in e is free if it’s not bound by an enclosing abstraction
Zz

For example, x is free in:

@/\' -- no binders at all!
\v&> xy -- no |x binder
(\x ->\y ->y) x -- x is outside the scope of the |x binder;

\/_,T—J -- intuition: it's not "the same" x

<

@V\,C%;%f‘efwm f\,u/t [[,j)%vek \j,éé C 7;)
P dl

o OFT

,is x bound or fre
F B

In the expression'

—

nd

m
s = == @ :

Free Variables

Anvariable x is free in e if there exists a free occurrence of x in e

We can formally define the set of all free variables in a term like so:

FV(x) = 222 S applel

v
FV(\x -> e) = 222 FY (& %%

FV(el e2) 222 ¢ T 13

. (e §73
(» Faxs

Closed Expressions

If e has no free variables it is said to be closed

¢ Closed expressions are also called combinators

What is the shortest closed expression?
\x» 2

g

Rewrite Rules of Lambda Calculus

1. a-step (aka renaming formals)

] 2. B-step (aka function call)

Copy- paste”

/D

Semantics: 5-Reduction

(\x -> el)/e2 | =b> |el[x := e2]

where el[x := e2] means “ el with all free occurrences of x replaced with e2”

Computation by search-and-replace:

 If you see an abstraction applied to an argument, take the body of the abstraction

and replace all free occurrences of the formal by that argument
E==————

e Wesaythat (\x -> el) e2 B-stepsto el[x := e2]

(\ x=x) apple =b apple
(;Pd mﬁe‘) o (x=2.)
((\Y"(\%‘”j)) apple) bonana

=b> (\y-y) banawno-

=bL> bamana-

Examples

(\x -> x) apple
=b> apple

Is this right? Ask Elsa (http://goto.ucsd.edu:8095/index.html#?demo=blank.lc)!

(\f -> f (\x -> x)) (give apple)

=b> 22?7

Qx - (\y= j)> appe, A, (\y-9)

o 222
(\w(\@%) appe 204
(> e) € 2 e [x=e]
@ \\3—) Y v
\y 2 oxﬂ?\t
@ w

(M=l rprrple
QuIZ Lk
2, Q9

= i
(\x -> (\y -> y)) Japple e, (x=%2]
bs77r

=bs 777 (;3\95-5>Eii)

A. apple
B. \y -> apple

C. \x -> apple

