Writing Applications

Lets write the classic “Hello world!” program.
- ——

For example, in Python you may write:

def main(): C) ()
print "hello, world!"

main()

and then you can run it:

$ python hello.py
hello world!

daw Dira. = Fi

mwn = \/

madn 2) —

C)
— ()

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

(Subd

le o

O CD(a}

5/4/2020 cse230

/N > OUFPUT

Haskell is a Pure language. <o - ¢[loC &
Not a value judgment, but a precise technical statement:
The “Immutability Principle”:

o A function must always return the same output for a given input

¢ Afunction’s behavior should never change

(o H—

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 2/22

5/4/2020 cse230

No Side Effects

run -time

Express(on —

compile-time

Value

~ Ty pPC

Haskell’s most radical idea: expression =*> value
o When you evaluate an expression you get a value and
» Nothing else happens

Specifically, evaluation must not have an side effects

e change a global variable or

e read afile or

e print to screen or
n — Oufj

. S—
¢ send an email or

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

3/22

5/4/2020 cse230

¢ launch a missile.

But... how to write “Hello, world!”

But, we want to ...

e print to screen

e read afile

e

e send an email

—

Thankfully, you can do all the above via a very clever idea: Recipe

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 4/22

5/4/2020 cse230

Recipes

This analogy is due to Joachim Brietner (https://www.seas.upenn.edu/~cis194/fall16/lectures/06-io-and-
monads.html)

Haskell has a special type called I0 — which you can think of as Recipe

type Recipe a = I0 ZL) Rea {)£ Co

Avalue of type Recipe a - D%Cﬂphﬁ\ﬂi % O Comp- with €#€¢LT
« isadescription of a computation that can have side-effects 7‘6,@(<(' X)W)d uw

/1
o which when executed performs some effectful I/O operations & vQ M a

e to produce a value of type a.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 5122

5/4/2020 cse230

Recipes have No Side Effects

Avalue of type Recipe a is

o Adescription of a computation that can have side-effects

INGREDIENTS PREPARATION
FOR THE CAKE:

2% cups/310 grams selt-rising
flour, sifted (see note)
% cup/45 grams cocoa powder,
sifted

1% cups/295 grams sugar
4 large eggs, lightly beaten
1% cups/360 millliters whole
milk
Vs 1 cup plus 2 tablespoons/255
. grams unsalted butter,
‘melted and sightly cooled
7 ounces/200 grams dark
, melted a
slightly cooled
2 teaspoons vanilla extract

1 teaspoon flaky sea salt,
white or black

FOR THE GANACHE:

1 cup/240 milliters sour
cream

14 ounces/400 grams milk

—_— -
saltDarkChoco :: Cake howToSaltChoco ::lRecipe Cake
— —
U r@‘ ((t N)t
Cake vs. Recipe th ‘1‘5 (ealo ¢

(L) chocolate cake, (R) a sequence of instructions on how to make a cake.
They are different (Hint: only one of them is delicious.)

Merely having a Recipe Cake has no effects! The recipe

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 6/22

5/4/2020 cse230

 Does not make your oven hot

» Does not make your your floor dirty

Only One Way to Execute Recipes

Haskell looks for a special value

ﬁain 11 Recipe ()

The value associated with main is handed to the runtime system and executed

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

=

7122

5/4/2020 cse230

Baker Aker

The Haskell runtime is a master chef who is the only one allowed to cook!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 8/22

5/4/2020 cse230

How to write an App in Haskell

Make a Recipe () thatis handed off to the master chef main.
e main canbe arbitrarily complicated

o composed of smaller sub-recipes

P
—
ka/{ L=

J

A Recipe to Print to Screen

putStrLn :: String -> Recipe ()

The function putStriLn ((oq({k (n ms‘g)

e takesasinputa String

e returns as output a Recipe ()

putStrLn msg isa Recipe () - when executed prints out msg on the screen.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 9/22

5/4/2020 cse230
main :: Recipe ()
main = putStrLn "Hello, world!"

...and we can compile and run it

$ ghc --make hello.hs
$./hello
Hello, world!

QUIZ: How to Print Multiple Things?

Suppose I want to print two things e.g.

$ ghc --make hello.hs
$./hello2

Hello!

World!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

10/22

5/4/2020 cse230

Can we try to compile and run this:
main = (putStLn "Hello!", putStrLn "World!")

A.Yes!
B. No, there is a type error!

C. No, it compiles but produces a different result!

A Collection of Recipes

Is just ... a collection of Recipes!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 11/22

5/4/2020 cse230

recPair :: (Recipe (), Recipe ())
(putStrLn "Hello!", putStrLn "World!")

recPair

recList :: [Recipe ()]

recList = [putStrLn "Hello!", putStrLn "World!"]

... we need a way to combine recipes!

Combining? Just do it!

We can combine many recipes into a single one using a do block

foo :: Recipe a3

foo = do r1 --r1 :: Recipe al
r2 --r2 :: Recipe a2
r3 -- r3 :: Recipe a3

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

12/22

5/4/2020 cse230

(or if you prefer curly braces to indentation)

foo = do { ri; --r1 :: Recipe al
r2; --r2 :: Recipe a2
r3 --r3 :: Recipe a3

}

The do block combines sub-recipes r1, r2 and r3 into a new recipe that

o Will execute each sub-recipe in sequence and

e Return the value of type a3 produced by the last recipe r3

Combining? Just do it!

So we can write

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

13/22

5/4/2020 cse230

main = do putStrLn "Hello!"
putStrLn "World!"

or if you prefer

main = do { putStrLn "Hello!";
putStrLn "World!"

EXERCISE: Combining Many Recipes

Write a function called sequence that

o Takes alist of recipes [r1,...,rn] asinputand

e Returns a single recipe equivalentto do {r1; ...; rn}

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

14/22

5/4/2020 cse230

sequence :: [Recipe a] -> Recipe a
sequence rs = 72?7

When you are done you should see the following behavior

-- Hello.hs

main = sequence [putStrLn "Hello!", putStrLn "World!"]
and then

$ ghc --make Hello.hs
$./hello

Hello!

World!

Using the Results of (Sub-) Recipes

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 1522

5/4/2020 cse230

Suppose we want a function that asks for the user’s name

$./hello
What is your name?
Ranjit # <<<<< user enters

Hello Ranjit!
We can use the following sub-recipes

-- | read and return a line from stdin as String
getLine :: Recipe String

-- take a string s, return a recipe that prints s
putStrLn :: String -> Recipe ()

But how to

e Combine the two sub-recipes while
e Passing the result of the first sub-recipe to the second.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 16/22

5/4/2020 cse230

Naming Recipe Results via “Assignment”

You can write
X <- recipe
to name the result of executing recipe

e X can be used to refer to the result in later code

Naming Recipe Results via “Assignment”
Lets, write a function that asks for the user’s name

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 17/22

5/4/2020 cse230

main = ask

ask :: Recipe ()
ask = do name <- getlLine;
putStrLn ("Hello " ++ name ++ "!")

Which produces the desired result

$./hello

What is your name?

Ranjit # user enters
Hello Ranjit!

EXERCISE

Modify the above code so that the program repeatedly asks for the users’s name until they provide a non-empty
string.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 18/22

5/4/2020

-- Hello.hs

main = repeatAsk

repeatAsk :: Recipe ()
repeatAsk = _fill_this_in

isEmpty :: String -> Bool
isEmpty s = length s ==

When you are done you should get the following behavior

$ ghc --make hello.hs

$./hello

What is your name?

user hits return
What is your name?

user hits return
What is your name?

user hits return
What is your name?
Ranjit # user enters
Hello Ranjit!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

cse230

19/22

5/4/2020

EXERCISE

cse230

Modify your code to also print out a count in the prompt

$ ghc --make hello.hs

$./hello
(0) What is your

(1) What is your
(2) What is your
(3) What is your

Ranjit
Hello Ranjit!

name?

name?

name?

name?

user hits return

user hits return

user hits return

user enters

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

20/22

5/4/2020 cse230
J
That's all about 10
You should be able to implement build from Directory.hs

Using these library functions imported at the top of the file

import System.FilePath (takeDirectory, takeFileName, (</>))
import System.Directory (doesFileExist, listDirectory)

The functions are

e takeDirectory
o takeFileName
o (</>)

e doesFileExist

e listDirectory

hoogle the documentation to learn about how to use them.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html

21/22

5/4/2020 cse230

(https://ucsd-cse230.github.io/sp20/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

file:///Users/rjhala/teaching/230-sp20/docs/lectures/04-haskell-io.html 22/22

