4/29/2020 cse230

Bottling Computation Patterns

Polymorphism and HOFs are the Secret Sauce
Refactor arbifrary repeated code patterns ...

... into precigely specified and reusable functions

[,’g»{— oL = A/I/
/ Cong a (L[:S‘fd\_)

ﬂfnTwico, 72 X = «lf(ﬁ/f)j

EXERCISE: Iteration

Write a function that squares a list of Int

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 1/32



4/29/2020 cse230

- squares :: [Int] -> [Int]
squares ns = 72?7

When you are done you should see

>>> squares [1,2,3,4,5]
[1,4,9,16,25]

Pattern: Iteration

Next, lets write a function that converts a String to uppercase.

>>> shout "hello"
"HELLO"

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 2/32



4/29/2020 cse230

Recall that in Haskell, a String isjusta [Char].

shout :: [Char] -> [Char]
shout = 2?2?

Hoogle (http://haskell.org/hoogle) to see how to transform an individual Char

Iteration

Common strategy: iteratively transform each element of input list

Like humans and monkeys, shout and squares share 93% of their DNA
(http://www.livescience.com/health/070412_ rhesus_ monkeys.html)

Super common computation pattern!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 3/32



4/29/2020 cse230

Abstract Iteration “Pattern” into Function

Remember D.R.Y. (Don’t repeat yourself)

Step 1 Rename all variables to remove accidental differences

-- rename 'squares' to 'foo'

foo [] =[]

foo (x:xs) = (x * x) : foo xs

-- rename 'shout' to 'foo'

foo [] =[]

foo (x:xs) = (toUpper x) : foo xs

Step 2 Identify what is different

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

4/32



4/29/2020 cse230

e In squares we transform x to X * x
e In shout we transform x to Data.Char.toUpper x
Step 3 Make differences a parameter

o Make transform a parameter f

foo f []
foo f (x:xs)

[]
(f x) : foo f xs

Done We have bottled the computation pattern as foo (aka map )

map f []
map f (x:xs)

[]
(f x) : map f xs

map bottles the common pattern of iteratively transforming a list:

Fairy In a Bottle

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

5/32



4/29/2020 cse230

QUIZ

What is the type of map ?

[]
(f x) : map f xs

3
[}
o
-4
—
—
1

map f (x:xs)
* A (Int -> Int) -> [Int] -> [Int]

B. (a -> a) -> [a] -> [a]

C. [a] -> [b] K—\

°D. (a -> b) -> [a] -> [b] Cé.—p S) —» EJQ__’___D'/]_

E. (@ -> b) -> [a] -> [a]

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 6/32



4/29/2020 cse230

The type precisely describes Map

>>> :type map
map :: (a -> b) -> [a] -> [b]

That is, map takes two inputs

e atransformeroftype a -> b

e alist of values [a]
and it returns as output
e alist of values [b]

that can only come by applying f to each element of the input list.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 7/32



4/29/2020 cse230

Reusing the Pattern

Lets reuse the pattern by instantiating the transformer

shout

-- OLD with recursion

shout :: [Char] -> [Char]

shout [] []

shout (x:xs) = Char.toUpper x : shout xs

-- NEW with map
shout :: [Char] -> [Char]
shout xs = map (2??) xs

squares

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 8/32



4/29/2020 cse230

-- OLD with recursion

squares :: [Int] -> [Int]

squares [] =[]

squares (x:xs) = (x * x) : squares Xs

-- NEW with map
squares :: [Int] -> [Int]
squares xs = map (?2??) xs

EXERCISE

Suppose I have the following type
type Score = (Int, Int) -- pair of scores for Hw@, Hwl

Use map to write a function

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 9/32



4/29/2020 cse230

total :: [Score] -> [Int]
total xs = map (???) xs

such that

>>> total [(10, 20), (15, 5), (21, 22), (14, 16)]
[30, 20, 43, 30]

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 10/32



The Case of the Missing Parameter

Note that we can write shout like this

shout :: [Char] -> [Char]
shout = map Char.toUpper

Huh. No parameters? Can someone explain?

The Case of the Missing Parameter

In Haskell, the following all mean the same thing

Suppose we define a function

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

11/32



4/29/2020

add :: Int -> Int -> Int
add x y = x +y

Now the following all mean the same thing

plus x y = add x y
plus x = add x
plus = add

Why? equational reasoning! In general

foo x = e X
-- is equivalent to

foo =-e

aslongas x doesn’tappearin e.

cse230

Plus 0 20
\¥

odd 10 20

<<P wS IO) ZD)
(Cadfi 0) 20 ))

Thus, to save some typing, we omit the extra parameter.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

12/32



4/29/2020 cse230

Pattern: Reduction

Computation patterns are everywhere lets revisit our old sumList

sumList :: [Int] -> Int
sumList [] =0
sumList (x:xs)

X + sumList xs
Next, a function that concatenates the Stringsin alist

catList :: [String] -> String
catList [] = ""

catList (x:xs) = x ++ (catList xs)

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

13/32



4/29/2020 cse230

Lets spot the pattern!

Step 1 Rename

foo [] 0
foo (x:xs) = x + foo xs

foo [] = nn
foo (x:xs) = x ++ foo xs

Step 2 Identify what is different
v 0 vs M

2.97?
Step 3 Make differences a parameter

foo p1 p2 []
foo p1 p2 (x:xs)

222

222

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 14/32



