4/29/2020 cse230

Pattern: Reduction

Computation patterns are everywhere lets revisit our old sumList

sumList :: [Int] -> Int
sumList [] =0
sumList (x:xs)

X + sumList xs
Next, a function that concatenates the Stringsin alist

catList :: [String] -> String
catList [] = ""

catList (x:xs) = x ++ (catList xs)

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

13/32

4/29/2020

Lets spot the pattern!

Step 1 Rename

foo [] 0
foo (x:xs) = x + foo xs

foo [] ="

foo (x:xs) = x ++ foo xs

Step 2 Identify what is different
v 0 v "

2.77?
Step 3 Make differences a parameter

foo p1 p2 []
foo p1 p2 (x:xs)

222

227

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

cse230

14/32

4/29/2020 cse230

EXERCISE: Reduction/Folding =~ /\ f\/\ /3_

This pattern is commonly called reducing or folding # u Df b x 7CL 7(5 Z Y - Z') [J)

foldr :: (a ->b ->b) ->b -> [a] - k\ /\(—\ ﬂm
foldr op base [] = base x ‘o <
foldr op base (x:xs) = op x (foldr op base XS) :C‘ 0 L4 5

Can you figure out how sumList and catList arejustinstances of foldr ? \
bs

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns .html 15/32

4/29/2020 cse230

sumList :: [Int] -> Int
sumList xs = foldr (?op) (?base) xs

catlList :: [String] -> String
catlList xs = foldr (?op) (?base) xs

Executing foldr

To develop some intuition about foldr lets “run” it a few times by hand.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

16/32

4/29/2020 cse230

foldr op base (x1:x2:x3:x4:[])

==>

x1 “op’ (foldr op base (x2:x3:x4:[1))
==>

x1 ‘op’ (x2 ‘op’ (foldr op base (x3:x4:[1)))
==>

x1 ‘op” (x2 ‘op’ (x3 ‘op' (foldr op base (x4:[]1))))
==>

x1 “op” (x2 “op’ (X3 ‘op” (x4 ‘op” foldr op base [])))
==> 2

/_\K
x1 “op” (x2 “op’ (X3 ‘op” (x4 ‘op’ base))) D

N~ 5y
ure of lists! r

Look how it mirrors the str

e (:) isreplaced by op
e [] isreplaced by base

So

foldr (+) 0 (x1:x2:x3:x4:[])
==> x1 + (X2 + (x3 + (x4 + 0))

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

17/32

4/29/2020 cse230

Typing foldr

foldr :: (a ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

foldr takes as input

e areducer functionoftype a -> b -> b
e abase value of type b

e alist of values to reduce [a]

and returns as output

e areducedvalue b

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 18/32

4/29/2020 cse230

QUIZ

Recall the function to compute the len of a list

len [] =0

len (x:xs) = 1 + len xs

Which of these is a valid implementation of listLen /
A. len = foldr (\n ->n + 1) 0 X r‘pr (akcoia}2°
B. len = o'lddﬁ éw};);:ﬁ) 2 nem)D X Compulf.a Sum (

C. len = foldr (_’n ->n+1)0 \/

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 19/32

4/29/2020 o L

X
@ﬂ = foldr (\x xs -> 1 + 0

E. All of the above 'r\ It IW"

The Missing Parameter Revisited

We wrote foldr as

foldr :: (@ ->b ->b) ->b ->[a] -> b
foldr op base [] = base
foldr op base (x:xs) = op x (foldr op base xs)

but can also write this

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

20/32

4/29/2020 cse230

foldr :: (a ->b ->b) ->b ->[a] -> b

foldr op base = go
where
go [] = base
go (x:xs) = op x (go xs)

Can someone explain where the xs went missing ?

Trees

Recall the Tree a type from last time

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 21/32

4/29/2020

data Tree a
= Leaf

| Node a (Tree a) (Tree a)

——
For example here’s a tree

tree2 e Tnt
tree2 Node 2 Leaf Leaf

tree3 :: Tree Int
tree3 = Node 3 Leaf Leaf

treel23 :: Tree Int
treel23 = Node 1 tree2 tree3

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns .html

l

cse230

2 J /.Oafg‘

Nede

22/32

4/29/2020 cse230 / \

L

Some Functions on Trees

Lets write a function to compute the height of a tree

height :: Tree a -> Int
height Leaf =0
height (Node x 1 r) = 1 + max (height 1) (height 1)

Here’s another to sum the leaves of a tree:

sumTree :: Tree Int -> Int
sumTree Leaf = ?27?

sumTree (Node x 1 r) = 222
Gathers all the elements that occur as leaves of the tree:

toList :: Tree a -> [a]
toList Leaf =[]
toList (Node x 1 r) = 22?2

Lets give it a whirl

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 23/32

4/29/2020 cse230

>>> height treei123
2

>>> sumTree treel?23
6

>>> tolList treel23
[1,2,3]

Pattern: Tree Fold

Can you spot the pattern? Those three functions are almost the same!

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 24/32

4/29/2020 cse230

Step 1: Rename to maximize similarity

-- height
foo Leaf
foo (Node x 1 r)

0
1 + max (foo 1) (foo 1)

-- sumlree
foo Leaf =0

foo (Node x 1 r) = foo 1 + foo r

-- tolList
foo Leaf
foo (Node x 1 r)

[]

x : foo 1L ++ foo r

Step 2: Identify the differences

1.99?
2,977

Step 3 Make differences a parameter

foo pl p2 Leaf = 2?7
foo p1 p2 (Node x 1 r) = 227

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 25/32

4/29/2020 cse230

Pattern: Folding on Trees

tFold op b Leaf =b x
tFold op b (Node x 1 r) = op x (tFold op b 1) (tFold op b r)

Lets try to work out the type of tFold!

tFold :: t_ op -> t b -> Tree a -> t_out

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 26/32

4/29/2020 cse230

QUIZ

What does tFold (\x y z -> y + z) 1 t return?
a. 0

b. the largest element in the tree t

c. the height of the tree t

d. the number-of-leaves of the tree t

e. type error

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 27/32

4/29/2020 cse230

EXERCISE

Write a function to compute the largest element in a tree or 0 if tree is empty or all negative.

treeMax :: Tree Int -> Int
treeMax t = tFold f b t
where
f =7?7?
b =?7?

Map over Trees

We can also write a tmap equivalent of map for Trees

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 28/32

4/29/2020 cse230
treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f (Leaf x) Leaf (f x)
treeMap f (Node 1 r) = Node (treeMap f 1) (treeMap f r)

which gives

>>> treeMap (\n -> n * n) treel23 -- square all elements of tree
Node 1 (Node 4 Leaf Leaf) (Node 9 Leaf Leaf)

EXERCISE

Recursion is HARD TO READ do we really have to use it ?

Lets rewrite treeMap using tFold !

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 29/32

4/29/2020 cse230

treeMap :: (a -> b) -> Tree a -> Tree b
treeMap f t = tFold op base t
where
op = ?2?
base = 727

When you are done, we should get

>>> animals = Node "cow" (Node "piglet" Leaf Leaf) (Leaf "hippo" Leaf Leaf)
>>> treeMap reverse animals
Node "woc" (Node "telgip" Leaf Leaf) (Leaf "oppih" Leaf Leaf)

Examples: Spotting Patterns In The “Real” World

We saw patterns in “toy” functions.

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 30/32

4/29/2020 cse230

But these patterns appear regularly in “real” code - look for them!
For an example, see the below

1. Start with beginner’s version riddled with explicit recursion (swizzle-vo.html).

2. Spot the patterns and eliminate recursion using HOFs (swizzle-v1.html).

3. Finally refactor the code to “swizzle” and “unswizzle” without duplication (swizzle-v2.html).
Try it yourself

Rewrite the code that swizzles Char to use the Map k v typein Data.Map

Whidh is more readable? HOF's or Recursion

At first, recursive versions of shout and squares are easier to follow

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html 31/32

4/29/2020 cse230

o fold takes abit of getting used to!

With practice, the higher-order versions become easier
 only have to understand specific operations
e recursion is lower-level & have to see “loop” structure
» worse, potential for making silly off-by-one errors

Indeed, HOFs were the basis of map/reduce and the big-data revolution
(http://en.wikipedia.org/wiki/MapReduce)

e Can parallelize and distribute computation patterns just once
(https://www.usenix.org/event/osdios/tech/full_papers/dean/dean.pdf)

 Reuse (http://en.wikipedia.org/wiki/MapReduce) across hundreds or thousands of instances!

(https://ucsd-cse230.github.io/sp20/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

file:///Users/rjhala/teaching/230-sp20/docs/lectures/07-bottling-patterns.html

32/32

