5/15/12020 cse230

Imperative Programming with The State Monad

A Tree Datatype

A tree with data at the leaves

data Tree a
= Leaf a
| Node (Tree a) (Tree a)
deriving (Eq, Show)

Here’s an example Tree Char

o VvV
charT :: Tree Char
charT = Node
@ (Node)

(Leaf 'a')

W20
aer ey (‘0 0) (') e'o)la,3)

(Leaf 'a'))

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 1/43

5/15/12020 cse230

Lets Work it Out!

Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)
label = 2?2?

such that

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

2/43

5/15/12020

>>> label charT

(Node
(Leaf ('a', 0))
(Leaf ('b', 1)))
(Node
(Leaf ('c', 2))
(Leaf ('a', 3)))

W

Labeling a Tree

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

cse230

3/43

5/15/12020 cse230

label :: Tree a -> Tree (a, Int)

label t = t'
where
(_, t') = (helper 0 t)
helper :: Int -> (Int, Tree (a, Int))
helper n (Leaf x) = (n+1, Leaf (X, n))
helper n (Node 1 r) = (n'', Node 1' r')
where
(n', 1") = helper n 1
(n'', ") = helper n' r

EXERCISE

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 4/43

5/15/12020 cse230

Now, modify label so that you get new numbers for each letter so,

>>> keylLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c') (Leaf 'a')))
(Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1))))

That is, a separate counter for each key a, b, c etc.

HINT Use the following Map k v type

-- | The empty Map
empty :: Map k v

-- | 'insert key val m" returns a new map that extends 'm'
-- by setting ‘key' to ‘val’
insert ::(k)->(v)-> Map k v -> Map k v

-- | 'findWithDefault def key m' returns the value of ‘key"
-- 1n 'm° or ‘def' if ‘key' is not defined
findWithDefault :: v -> k -> Map k v -> v

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 5/43

5/15/12020 cse230

Common Pattern?

Both the functions have a common “shape”

Q}W}’ 0ldInt -> (NewInt, NewTree)
_— T —

\ 'ﬂ} OldMap -> (NewMap, NewTree)
If we generally think of Int and Map Char Int as global state

OldState NewState, NewVal)

r 'ﬂ mef-uat

OLD NEW

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

6/43

5/15/12020 cse230

State Transformers

Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...
2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

e takesasinputanold s :: State

e returnsasoutputanew s' :: State andvalue v :: a

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 7/43

5/15/12020 cse230

Executing Transformers

Lets write a function to evaluate an ST a

evalState:: State -> ST a -> a
evalState= ??7?

QUIZ

What is the value of quiz ?

st :: St [Int]
st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalStatel00 st

A. 103

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 9/43

5/15/12020 cse230

B. [100, 101, 102]
C. (103, [100, 101, 102])
D. [0, 1, 2]

E. Type error

Lets Make State Transformer a Monad!

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 10/43

5/15/12020 cse230

instance Monad ST where
return :: a -> ST a
return = returnST

(>>=) :: STa->(a->STb) ->SThb
(>>=) = bindST

EXERCISE: Implement returnST!

What is a valid implementation of returnST?

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 11/43

5/15/12020 cse230

Int
STC (State -> (State, a))

type State
data ST a

returnST :: a -> ST a
returnST = 22??

What is returnST doing ?

returnST v is a state transformer that ... ???

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 12/43

5/15/12020 cse230

(Can someone suggest an explanation in English?)

HELP

Now, lets implement bindST!

type State Int

data ST a STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b
bindST = 22?2

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 13/43

5/15/12020 cse230

What is returnST doing ?

returnST v is a state transformer that ... 7??

(Can someone suggest an explanation in English?)

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

14/43

5/15/12020 cse230

What is returnST doing ?

returnST v is a state transformer that ... 7??

(Can someone suggest an explanation in English?)

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

15/43

5/15/12020 cse230

bindST lets us sequence state transformers
st >>= f

1. Applies transformer st to an initial state s
o togetoutput s' and value x

2. Then applies function f to the resulting value x
o to get a second transformer

3. The second transformer is applied to s

o togetfinal s'' andvalue y

OVERALL: Transform s to s'' and produce value y

— st [f£
s’ s"

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

16/43

