5/15/12020 cse230

Imperative Programming with The State Monad

A Tree Datatype

A tree with data at the leaves

data Tree a
= Leaf a
| Node (Tree a) (Tree a)
deriving (Eq, Show)

Here’s an example Tree Char

o VvV
charT :: Tree Char
charT = Node
@ (Node)

(Leaf 'a')

W20
aer ey (‘0 0) (') e'o)la,3)

(Leaf 'a'))

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 1/43

5/15/12020 cse230

Lets Work it Out!

Write a function to add a distinct label to each leaf

label :: Tree a -> Tree (a, Int)
label = 2?2?

such that

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

2/43

5/15/12020

>>> label charT

(Node
(Leaf ('a', 0))
(Leaf ('b', 1)))
(Node
(Leaf ('c', 2))
(Leaf ('a', 3)))

W

Labeling a Tree

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

cse230

3/43

5/15/12020 cse230

label :: Tree a -> Tree (a, Int)

label t = t'
where
(_, t') = (helper 0 t)
helper :: Int -> (Int, Tree (a, Int))
helper n (Leaf x) = (n+1, Leaf (X, n))
helper n (Node 1 r) = (n'', Node 1' r')
where
(n', 1") = helper n 1
(n'', ") = helper n' r

EXERCISE

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 4/43

5/15/12020 cse230

Now, modify label so that you get new numbers for each letter so,

>>> keylLabel (Node (Node (Leaf 'a') (Leaf 'b')) (Node (Leaf 'c') (Leaf 'a')))
(Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1))))

That is, a separate counter for each key a, b, c etc.

HINT Use the following Map k v type

-- | The empty Map
empty :: Map k v

-- | 'insert key val m" returns a new map that extends 'm'
-- by setting ‘key' to ‘val’
insert ::(k)->(v)-> Map k v -> Map k v

-- | 'findWithDefault def key m' returns the value of ‘key"
-- 1n 'm° or ‘def' if ‘key' is not defined
findWithDefault :: v -> k -> Map k v -> v

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 5/43

5/15/12020 cse230

Common Pattern?

Both the functions have a common “shape”

Q}W}’ 0ldInt -> (NewInt, NewTree)
_— T —

\ 'ﬂ} OldMap -> (NewMap, NewTree)
If we generally think of Int and Map Char Int as global state

OldState NewState, NewVal)

r 'ﬂ mef-uat

OLD NEW

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

6/43

5/15/12020 cse230

State Transformers

Lets capture the above “pattern” as a type

1. A State Type

type State = ... -- lets "fix" it to Int for now...
2. A State Transformer Type

data ST a = STC (State -> (State, a))

A state transformer is a function that

e takesasinputanold s :: State

e returnsasoutputanew s' :: State andvalue v :: a

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 7/43

5/15/12020 cse230

Executing Transformers

Lets write a function to evaluate an ST a

evalState:: State -> ST a -> a
evalState= ??7?

QUIZ

What is the value of quiz ?

st :: St [Int]
st = STC (\n -> (n+3, [n, n+1, n+2]))

quiz = evalStatel00 st

A. 103

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 9/43

5/15/12020 cse230

B. [100, 101, 102]
C. (103, [100, 101, 102])
D. [0, 1, 2]

E. Type error

Lets Make State Transformer a Monad!

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 10/43

5/15/12020 cse230

instance Monad ST where
return :: a -> ST a
return = returnST

(>>=) :: STa->(a->STb) ->SThb
(>>=) = bindST

EXERCISE: Implement returnST!

What is a valid implementation of returnST?

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 11/43

5/15/12020 cse230

Int
STC (State -> (State, a))

type State
data ST a

returnST :: a -> ST a
returnST = 22??

What is returnST doing ?

returnST v is a state transformer that ... ???

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 12/43

5/15/12020 cse230

(Can someone suggest an explanation in English?)

HELP

Now, lets implement bindST!

type State Int

data ST a STC (State -> (State, a))

bindST :: ST a -> (a -> ST b) -> ST b
bindST = 22?2

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 13/43

5/15/12020 cse230

What is returnST doing ?

returnST v is a state transformer that ... 7??

(Can someone suggest an explanation in English?)

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

14/43

5/15/12020 cse230

What is returnST doing ?

returnST v is a state transformer that ... 7??

(Can someone suggest an explanation in English?) _ j
—>>

retuin ¥ = ¢ 3

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 15/43

5/15/12020 cse230

bindST lets us sequence state transformers

- = -
]

St >>= f V
. o egs ! “
1. Applies transformer st to an initial state s | /\
o togetoutput s' and value x) ' I
. . . >
2. Then applies function f to the resulting value x S S a 7)
o to get a second transformer | l S
& S
t

3. The second transformer is applied to s' .

o togetfinal s'' andvalue y

OVERALL: Transform s to s'' and produce value y =

2
x] + 5 lnextq
- st R f . loo (\

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 16/43

5/15/12020 cse230

—

= T 2/00

]
S — next ’-—?s' M
“-'ofot fol

L —

Lets Implement a Global Counter

The (counter) State isan Int
type State = Int
A function that increments the counter to return the next Int.

next :: ST Int
next = STC (\old -> let new = old + 1 in (new, old))
P

next is a state transformer that that returns Int values q goe,! 0','07"}
(09 0 1oV ERISA
S S J&Lnij—)jj
- - - ?-9;\'
-—>$ | neat 5, —— S, — 33 e) ~3

(00 Jol 101 (03 fe3

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 17/43

oo (1) pooB0) g (1) L0004

s mé\e i/—/r) nextf—| @::E

— 4
. = 3 ¢ " Ib

Recall that

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST Int
next = STC (\n -> (n+1, n))

What does quiz evaluate to?
quiz = evalState 100 next

A. 100
B. 101

C. 0

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 18/43

5/15/12020 cse230

D. 1

E. (101, 100)

QUIZ

Recall the definitions

evalState :: State -> ST a -> a
evalState s (STC st) = snd (st s)

next :: ST Int
next = STC (\n -> (n+1, n))

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 19/43

5/15/12020

Now suppose we have

wtf1l
wtf1l

ST Int
next >>= \n ->

return n
What does quiz evaluate to?
quiz = evalState 100 wtf1
A. 100
B. 101
C.0
D. 1

E. (101, 100)

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

cse230

20/43

5/15/12020 cse230

QUIZ

Consider a function wtf2 defined as

wtf2 = next >>= \nl ->
next >>= \n2 ->
next >>= \n3 ->
return [n1, n2, n3]

What does quiz evaluate to?
quiz = evalState 100 wtf

A. Type Error!

B. [100, 100, 100]
C.[o0,0,0]

D. [100, 101, 102]

E. [102,102,102]

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 21/43

5/15/12020 cse230

Chaining Transformers

>>= lets us chain transformers into one big transformer!

So we can define a function to increment the counter by 3

-- Increment the counter by 3
next3 :: ST [Int, Int]
next3 = next >>= \nl ->
next >>= \n2 ->
next >>= \n3 ->
return [n1,n2,n3]

And then sequence it twice to get

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 22/43

5/15/2020
next6 :: ST [Int]
next6 = next3 >>= \ns_1_2 3 ->
next3 >>= \ns_4 5 6 ->
return (ns_123 ++ ns_4 5 6)

Lets dO the above examples

Remember, do is just nice syntax for the above!

-- Increment the counter by 3
next3 :: ST [Int, Int]

next3 = do
nl <- next
n2 <- next
n3 <- next

return [n1,n2,n3]

And then sequence it twice to get

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

cse230

23/43

5/15/12020 cse230

next6 :: ST [Int]
next6 = do
ns_123 <- next3
ns_456 <- next3
return (ns_123 ++ ns_4 5 6)

Labeling a Tree with a “Global Counter”

Lets rewrite our Tree labeler with ST

helperS :: Tree a -> ST (Tree (a, Int))
helperS = 22?

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

24/43

5/15/12020

Wow, compare to the old code!

helper :: Int -> (Int, Tree (a, Int))

helper n (Leaf x) = (n+1, Leaf (x, n))
helper n (Node 1 r) = (n'', Node 1' r')
where
(n', 1Y) = helper n 1
(n'', r") = helper n' r

Avoid worrying about propagating the “right” counters

 Automatically handled by ST monad instance!

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

cse230

25/43

5/15/12020 cse230

Executing the Transformer

In the old code we called the helper with an initial counter 0

label :: Tree a -> Tree (a, Int)

label t = t'
where
(_, t') = helper 0 t

In the new code what should we do?

helperS :: Tree a -> ST (Tree (a, Int))
helperS = ...

labelS :: Tree a -> Tree (a, Int)
labelS = 2?2?

Now, we should be able to exec the labelS transformer

>>> labelS (Node (Node (Leaf 'a') (Leaf 'b')) (Leaf 'c'))
(Node (Node (Leaf ('a', 0)) (Leaf ('b', 1))) (Leaf ('c', 2)))

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

26/43

5/15/12020 cse230

How to implement KeylLabe l ?

So far, we hardwired an Int counter as our State

type State Int

data ST a STC (State -> (State, a))

Have to reimplement the monad if we want a different state?
e e.g. Map Char Int toimplement keylLabel

Don’t Repeat Yourself!

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 27/43

5/15/12020 cse230

A Generic State Transformer
Don’t have separate types for IntList and CharList
o Define a generic list [a] where a is a type parameter
 Instantiate a toget [Int] and [Char]

Similarly, reuse ST with a type parameter!
data ST s a = STC (s -> (s, a))

o State is represented by type s
e Return Value is the type a (as before).

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

28/43

5/15/12020 cse230

A Generic State Transformer Monad

Lets make the above a(n instance of) Monad

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 29/43

5/15/2020 cse230
instance Monad (ST s) where
return x = STC (\s -> (s, X))
st >>= f = STC (\s -> let (s', x) = runState st s
in runState (f x) s')

runState :: ST s a ->s -> (s, a)
runState (STC f) s = f s

evalState :: ST s a ->s -> a
evalState st s = snd (runState st s)

(exactly the same code as returnST and bindST)

Lets implement kKeyLabel

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 30/43

5/15/12020 cse230

1. Definea Map Char Int state-transformer
type CharST a = ST (Map Char Int) a
2. Modify next totakea Char

charNext :: Char -> CharST Int

charNext ¢ = STC (\m ->
let
n = M.findWithDefault 0 c m -- label for 'c'
m' = M.insert c (n+1) m -- update map
in
(m', n)
)

3. Modify helper touse charNext

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 31/43

5/15/12020 cse230

keyHelperS :: Tree Char -> ST (Tree (Char, Int))
keyHelperS (Leaf c) = do

n <- charNext c

return (Leaf (c, n))

keyHelperS (Node 1 r) = do
1' <- keyHelperS 1

r' <- keyHelperS r

return (Tree 1' ')

keyLabelS :: Tree Char -> Tree (Char, Int)
keyLabelS t = evalState (keyHelperS t) empty

Lets make sure it works!

>>> keylLabelS charT

Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1)))

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

32/43

5/15/12020 cse230

Lets look at the final “state”

>>> (final, t) = runState (keyHelper charT) M.empty
The returned Tree is

>>> t

Node
(Node (Leaf ('a', 0)) (Leaf ('b', 0)))
(Node (Leaf ('c', 0)) (Leaf ('a', 1)))

and the final State is

>>> final
fromList [('a',2),('b',1),('c',1)]

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 33/43

5/15/12020 cse230

Generically Getting and Setting State

As State is “generic”

e i.e.atypevariablennot Int or Map Char Int or..
It will be convenient to have “generic” get and put functions
o that read and update the state

-- | “get’ leaves state unchanged & returns it as value

get :: ST s s

-- | ‘“set s changes the state to ‘s’ & returns () as a value

put :: s -> ST s ()

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 34/43

5/15/12020 cse230

EXERCISE

Can you fill in the implementations of get and set ?

HINT Just follow the types...

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 35/43

5/15/2020 cse230
-- | “get’ leaves state unchanged & returns it as value
get :: ST s s
get = STC (\oldState -> ??7?)

-- | “put s' changes the state to ‘s’ & returns () as a value
put :: s -> ST s ()
put s = STC (\oldState -> ???)

Using get and put : Global Counter

We can now implement the plain global counter next as

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 36/43

5/15/12020 cse230

next :: ST Int Int

next = do
n <- get -- save the current counter as 'n'
put (n+1) -- update the counter to 'n+1'
return n -- return the old counter

Using get and put : Frequency Map

Lets implement the char-frequency counter charNext as

charNext :: Char -> ST (Map Char Int) Int
charNext ¢ = do

m <- get -- get current freq-map
let n = M.findWithDefault © ¢ m -- current freq for ¢ (or 0)
put (M.insert c (n+1) m) -- update freq for c

return n -- return current as value

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

37/43

5/15/12020 cse230

A State-Transformer Library

The Control.Monad.State module (http://hackage.haskell.org/packages/archive/mtl/latest/doc/html/Control-
Monad-State-Lazy.html#g:2)

« defines a State-Transformer like above.
 hides the implementation of the transformer

Clients can only use the “public” API

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 38/43

5/15/12020 cse230

-- | Like 'ST s a' but "private"”, cannot be directly accessed

data State s a

-- | Like the synonyms described above
get :: State s s

put :: s -> State s ()

runState :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a

Your homework will give you practice with using these

 to do imperative functional programming

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 39/43

5/15/12020 cse230

The 10 Monad

Remember the I0 a or Recipe a type from this lecture (04-haskell-io.html)

e Recipes that return a result of type a
o But may also perform some input/output

A number of primitives are provided for building I0 recipes

-- I0 is a monad
return :: a -> I0 a
(>>=) ::I0a ->(a->I0b) ->I0Db

Basic actions that can be “chained” via >>= etc.

getChar :: I0 Char
putChar :: Char -> I0 ()

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 40/43

5/15/12020

A Recipe to Read a Line from the Keyboard

getLine :: IO String
getLine = do
X <- getChar
if x == '\n' then
return []
else do
xs <- getlLine
return (x:xs)

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

41/43

5/15/12020 cse230

10 is a “special case” of the State- Transformer

The internal state is a representation of the state of the world

data World -- machine, files, network, internet ...

type I0 a = World -> (World, a)

A Recipe isafunction that

o takes the current World asits argument

e returns avalue a and a modified World
The modified World reflects any input/output done by the Recipe

This is just for understanding, GHC implements I0 more efficiently!
(http://research.microsoft.com/Users/simonpj/papers/marktoberdorf/)

(https://ucsd-cse230.github.io/sp20/feed.xml) (https://twitter.com/ranjitjhala)
(https://plus.google.com/u/0/104385825850161331469) (https://github.com/ranjitjhala)

Generated by Hakyll (http://jaspervdj.be/hakyll), template by Armin Ronacher (http://lucumr.pocoo.org),
suggest improvements here (https://github.com/ucsd-progsys/liquidhaskell-blog/).

https://ucsd-cse230.github.io/sp20/lectures/11-state.html

42/43

5/15/12020 cse230

https://ucsd-cse230.github.io/sp20/lectures/11-state.html 43/43

