
CSE 230 (Wi 25) Handout

Jan 14, 2025

Question 1

Recall the definition of Nat from lecture

inductive Nat where
| zero : Nat
| succ : Nat -> Nat
deriving Repr

Fill in the blanks below to write a tail-recursive version of add that adds two Nats.

def add_tr(xs ys : Nat) : Nat :=

____________________________________________________________

____________________________________________________________

____________________________________________________________

Question 2

Recall the definitions of sum_list and sum_list' from lecture.

def sum_list (xs : List Nat) : Nat :=
match xs with
| [] => 0
| x ::xs' => x + sum_list xs'

def sum_list_tr (xs : List Nat) (acc : Nat): Nat :=
match xs with
| [] => acc
| x :: ys => sum_list_tr ys (acc + x)

def sum_list' (xs: List Nat) := sum_list_tr xs 0

Fill in the blanks below to write a generalized induction hypothesis that would let us complete the proof of
sum_list_eq_sum_list'

theorem generalized_ih : _______________________________________________ := by
/- ignore -/

Question 3

Recall the definitions of Aexp and eval and eval' from lecture.

inductive Aexp : Type where
| const : Nat -> Aexp
| plus : Aexp -> Aexp -> Aexp

1



deriving Repr

def eval (e: Aexp) : Nat :=
match e with
| const n => n
| plus e1 e2 => eval e1 + eval e2

def eval_acc (e: Aexp) (acc: Nat) : Nat :=
match e with
| const n => n + acc
| plus e1 e2 => eval_acc e2 (eval_acc e1 acc)

def eval' (e: Aexp) := eval_acc e 0

Fill in the blanks below to write a generalized induction hypothesis that would let us complete the proof of
eval_eq_eval'

theorem generalized_ih : _______________________________________________ := by
/- ignore -/

theorem eval_eq_eval' (e: Aexp) : eval e = eval' e := by
intros e
simp [eval', generalized_ih]

2


	Question 1
	Question 2
	Question 3

