
From Failures to Lists of Successes

Recap: Monad
Monad is a typeclass with two functions

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m

A Maybe Monad
We can define a Maybe a type to represent “maybe-null” values

data Maybe val

 = Just val -- ^ "Just one value" :-)

 | Nothing -- ^ "No value" :-(

A the Monad instance for Maybe
Can you help me fill this in?

instance Monad Maybe where

 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

 Nothing >>= _ = ???

 (Just v) >>= f = ???

 return :: a -> Maybe a

 return v = ???

Maybe represents computations that may produce no
value
A value of type Maybe a is either

Nothing which we can think of as representing failure, or

Just x for some x of type a , which we can think of as success

Using Maybe for computations that may produce no
value
We saw how to write an eval function that doesn’t crash

But instead gracefully returns a Nothing (if there is a div-by-zero)

eval :: Expr -> Maybe Int

eval (Number n) = Just n

eval (Plus e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 return (v1 + v2)

eval (Div e1 e2) = do n1 <- eval e1

 n2 <- eval e2

 if n2 == 0

 then Nothing

 else Just (v1 `div` v2)

Replacing Failure by a List of Successes
Lets generalize the Maybe monad into a List monad!

Nothing is the empty list []

Just v is the singleton list [v]

… but maybe there’s something sensible for lists with many elements?

QUIZ
Lets make lists an instance of Monad by:

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where

 return = returnForList

 (>>=) = bindForList

What must the type of returnForList be ?

A. [a]

B. a -> a

C. a -> [a]

D. [a] -> a

E. [a] -> [a]

A Monad Instance for Lists
Lets implement the Monad instance for lists?

-- returnForList :: a -> [a]

returnForList x = ???

What’s the only sensible implementation?

QUIZ
Lets make lists an instance of Monad by:

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

instance Monad [] where

 return = returnForList

 (>>=) = bindForList

What must the type of bindForList be?

A. [a] -> [b] -> [b]

B. [a] -> (a -> b) -> [b]

C. [a] -> (a -> [b]) -> b

D. [a] -> (a -> [b]) -> [b]

E. [a] -> [b]

QUIZ
Which of the following is a valid

bindForList :: [a] -> (a -> [b]) -> [b]

bindForList = bfl

-- a

bfl f [] = []

bfl f (x:xs) = f x : bfl f xs

-- b

bfl f [] = []

bfl f (x:xs) = f x ++ bfl f xs

-- c

bfl [] f = []

bfl (x:xs) f = f x ++ bfl f xs

-- d

bfl [] f = []

bfl (x:xs) f = f x : bfl f xs

-- e

bfl [] f = []

bfl (x:xs) f = x : f xs

The List Monad
Lets “run” the >>= on some inputs to see how it behaves!

(>>=) :: [a] -> (a -> [b]) -> [b]

[] >>= _ = []

(x:xs) >>= f = f x ++ (xs >>= f)

[] >>= f ==> []

[x3] >>= f ==> f x3 ++ ([] >>= f) ==> f x3

[x2,x3] >>= f ==> f x2 ++ ([x3] >>= f) ==> f x2 ++ f x3

[x1,x2,x3] >>= f ==> f x1 ++ ([x2,x3] >>=f) ==> f x1 ++ f x2 ++ f x

3

QUIZ
What does the following program evaluate to?

quiz = do x <- ["cat", "dog"]

 y <- [0, 1]

 return (x, y)

A. [("cat", 0)]

B. [("dog", 1)]

C. ["cat", "dog", 0, 1]

D. ["cat", 0, "dog", 1]

E. [("cat", 0), ("cat", 1), ("dog", 0), ("dog", 1)]

Whoa, behaves like a for -loop!
Lets work it out.

do {x <- ["cat", "dog"]; y <- [0, 1]; return (x, y)}

== ["cat", "dog"] >>= (\x -> [0, 1] >>= (\y -> return (x, y)))

Now lets break up the evaluation

[0, 1] >>= (\y -> [(x, y)])

==> ((\y -> [(x, y)]) 0) ++ ((\y -> [(x, y)]) 1)

==> [(x, 0)] ++ [(x, 1)]

==> [(x, 0), (x, 1)]

So

["cat", "dog"] >>= (\x -> [(x, 0), (x, 1)])

==> (\x -> [(x, 0), (x, 1)]) "cat") ++ (\x -> [(x, 0), (x, 1)]) "do

g")

==> [("cat", 0), ("cat", 1)] ++ [("dog", 0), ("dog", 1)]

==> [("cat", 0), ("cat", 1), ("dog", 0), ("dog", 1)]

QUIZ

cse230 Contact Grades Lectures Assignments Links Piazza Canvas

https://ucsd-cse230.github.io/wi26
https://ucsd-cse230.github.io/wi26/contact.html
https://ucsd-cse230.github.io/wi26/grades.html
https://ucsd-cse230.github.io/wi26/lectures.html
https://ucsd-cse230.github.io/wi26/assignments.html
https://ucsd-cse230.github.io/wi26/links.html
https://www.piazza.com/class/mk1dl38l7yg690#
https://canvas.ucsd.edu/courses/72285

What does quiz evaluate to?

foo f xs = do

 x <- xs

 return (f x)

quiz = foo (\n -> n*n) [0,1,2,3]

A. [0] B. [0,1,4,9] C. [9] D. Type Error E. Runtime Exception

QUIZ
What does the following evaluate to?

triples :: [(Int, Int, Int)]

triples = do

 x <- [0,1]

 y <- [10,11]

 z <- [100,101]

 []

A. [(0,10,100), (0,10,101),(1,10,100),(1,10,101),(0,11,100),

(0,11,101)]

B. []

C. [[]]

D. [(0,10,100), (1,11,101)]

E. [0,1,10,100,100,101]

EXERCISE: Using the List Monad
A Pythagorean Triple is a

triple of positive integers a , b , c

such that a*a + b*b = c*c

Lets implement a function to return all triples where

a , b , c are between 0..n

pyTriples :: Int -> [(Int, Int, Int)]

pyTriples n = do

 a <- ???

 b <- ???

 c <- ???

 ???

HINT: You can write [i..j] to generate the list of numbers between i and j

>>> [0..5]

[0,1,2,3,4,5]

Using the List Monad
So lets implement a function

bits :: Int -> [String]

Such that

>>> bits 0

[]

>>> bits 1

["0", "1"]

>>> bits 2

["00", "01", "10", "11"]

>>> bits 3

["000", "001", "010", "011", "100", "101", "110", "111"]

Summary
The Maybe or Result monad instance

Conveniently work with computations that may fail

Generalize to List monad instance

empty list is failure

non-empty list is successes

Gives us a for -loop or iterator for free.

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.

http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

