cse230 Contact Grades Lectures Assignments Links Piazza Canvas

Recap: Monad

Monad is a typeclass with two functions

class Monad m where
return :: a ->m a
(>>=) ::ma->(a->mb) ->m

A Maybe Monad

We can definea Maybe a type to represent “maybe-null” values

data Maybe val
= Just val -- 2~ "Just one value" :-)
| Nothing -- 2 "No value" :-(

A the Monad instance for Maybe

Can you help me fill this in?

instance Monad Maybe where
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= = 222
(Just v) >>=f = 222

return :: a -> Maybe a

return v = 27?2?

Maybe represents computations that may produce no
value

A value of type Maybe a is either
» Nothing which we can think of as representing failure, or

» Just x for some x of type a,which we can think of as success

Using Maybe for computations that may produce no
value

We saw how to write an eval function that doesn’t crash

 But instead gracefully returns a Nothing (if there is a div-by-zero)

eval :: Expr -> Maybe Int
eval (Number n) = Just n
eval (Plus el e2)

do n1 <- eval el
n2 <- eval e2
return (vl + v2)

eval (Div el e2) do nl1 <- eval el

n2 <- eval e2
if n2 == 0
then Nothing
else Just (vl “div’ v2)

Replacing Failure by a List of Successes
Lets generalize the Maybe monad into a List monad!

» Nothing isthe emptylist []
o Just v isthesingleton list [v]

... but maybe there’s something sensible for lists with many elements?

QUIZ

Lets make lists an instance of Monad by:

class Monad m where
return :: a ->m a
(>>=) :ma->(a->mb) ->mb

instance Monad [] where
return = returnForList
(>>=) = bindForList

What must the type of returnForList be?
A. [a]

B.a ->a

C.a -> [a]

D. [a] -> a

E. [a] -> [a]

A Monad Instance for Lists

Lets implement the Monad instance for lists?

-- returnForList :: a -> [a]
returnForList x = 22??

What’s the only sensible implementation?

QUIZ

Lets make lists an instance of Monad by:

class Monad m where
return :: a ->m a
(>>=) ::ma->(a->mb) ->mb

instance Monad [] where
return = returnForList
(>>=) = bindForList

What must the type of bindForList be?
A. [a] -> [b] -> [b]

B. [a] -> (a -> b) -> [b]

C.[a] -> (a -> [b]) -> b

D. [a] -> (a -> [b]) -> [b]

E. [a] -> [b]

QUIZ

Which of the following is a valid

bindForList :: [a] -> (a -> [b]) -> [b]
bindForList = bfl

--a
bfl f [] []
bfl f (x:xs) = f x : bfl f xs

-- b

bfFLF [1 =[]

bfl f (x:xs) = f x ++ bfl f xs
-- C

bfl [] f =11

bfl (x:xs) f = f x ++ bfl f xs
-- d

bfl [] f=1]

bfl (x:xs) f = f x : bfl f xs
--e

bfl [] f =11

bfl (x:xs) f = x : f xs

The List Monad

Lets “run” the >>= on some inputs to see how it behaves!

(>>=) :: [a] -> (a -> [b]) -> [b]

[] >=_ =[]
(x:xs) >>=f = f x ++ (
[] >>= f ==> []

[X3] >>= f ==>f x3 ++ ([] >>=f) ==> f x3
[x2,x3] >>= f ==> f x2 ++ ([x3] >>= f) ==> f x2 ++ f x3

[x1,x2,x3] >>= f ==> f x1 ++ ([x2,x3] >>=f ) ==> f x1 ++ f x2 ++ f X

tF Z, ) -H'(]/-)ZL) h‘(f(l&) " ‘H'Q)CZW)

QUIZ

What does the following program evaluate to?

quiz = do x <- ["cat", "dog"]

y <- [0: 1]
return (x, y)

A. [("cat", 0)]
B. [("dog", 1)]
C. ["cat", "dog", 0, 1]
D. ["cat", 0, "dog", 1]

E. [("cat", 0), ("cat", 1), ("dog", 0), ("dog", 1)]

X & € € ‘ji>:>'§\ %7
! e, » x>

Xbé' elf

e, €3

Whoa, behaves like a for-loop!

Lets work it out.

do {x <- ["cat", "dog"]; y <- [0, 1]; return (x, y)}

== ['cat", "dog"] >>= (W -> [0, 1] >>= (\y > egggea[(x, V)
Now lets break up t?_e evaluation (_(2’ )D> ; LOC ,1—)3

[0,0 1] >>= (\y -> [(x, y)])
X, Ao

==> ((\y -> [(x, ¥)1)0) ++ ((\y -> [(x, y)]) 1)
==> [(x, 0)] ++ [(x, 1)]

==> [(x, 0), (x, 1)]

So

["cat", “dog"] >>= (\x -> [(x, 0), (x, 1)])

==> (\x -> [(x, 0), (x, 1)]) "cat") ++ (\x -> [(x, 0), (x, 1)])""do
g")

==> [("cat", 0), ("cat", 1)] ++ [("dog", 0), ("dog", 1)]

==> [("cat", 0), ("cat", 1), ("dog", 0), ("dog", 1)]

QUIZ


https://ucsd-cse230.github.io/wi26
https://ucsd-cse230.github.io/wi26/contact.html
https://ucsd-cse230.github.io/wi26/grades.html
https://ucsd-cse230.github.io/wi26/lectures.html
https://ucsd-cse230.github.io/wi26/assignments.html
https://ucsd-cse230.github.io/wi26/links.html
https://www.piazza.com/class/mk1dl38l7yg690#
https://canvas.ucsd.edu/courses/72285

What does quiz evaluate to?

foo f xs = do
X <- XS
return (f x)

quiz = foo (\n -> n*n) [0,1,2,3]

A. [0] B. [0,1,4,9] C. [9] D. Type Error E. Runtime Exception

QUIZ

What does the following evaluate to?

triples :: [(Int, Int, Int)]

triples = do
X <- [0,1]
y <- [10,11]
z <- [100,101]
[]

A. [(0,10,100), (0,10,101),(1,10,100),(1,10,101),(0,11,100),
(0,11,101)]

B. []
C. [[1]
D. [(0,10,100), (1,11,101)]

E. [0,1,10,100,100,101]

EXERCISE: Using the List Monad

A Pythagorean Triple is a

« triple of positive integers a, b, ¢

» suchthat a*a + b*b = c*c
Lets implement a function to return all triples where

e a,b,c arebetween 0..n

pyTriples :: Int -> [(Int, Int, Int)]
pyTriples n = do

a <- 77?2
b <- 222
c <- 277
?27?

HINT: You can write [1..j] to generate the list of numbers between 1 and j

>>> [0..5]
[011’2’3’4’5]

Using the List Monad

So lets implement a function
bits :: Int -> [String]
Such that

>>> bits 0

[]

>>> bits 1
[IIOII’ ||1||]
>>> bits 2
[’IOO”, |l01||, ||10l|, ||11|l]

>>> bits 3
[’IOOOH, IIOO]-’I’ ||010||, |l911||, ”10@”, ||101l|, ||110||’ ||111||]

Summary

The Maybe or Result monad instance
» Conveniently work with computations that may fail
Generalize to List monad instance

» empty list is failure
» non-empty list is successes

Gives usa for -loop or iterator for free.

Generated by Hakyll, template by Armin Ronacher, suggest improvements here.


http://jaspervdj.be/hakyll
http://lucumr.pocoo.org/
https://github.com/ucsd-progsys/liquidhaskell-blog/

