
CSE 230 Second Midterm, Fall 2023

Ranjit Jhala

December 7th, 2023

NAME ____________________________________

SID ____________________________________

• You have 75 minutes to complete this exam.

• Where limits are given, write no more than the amount specified.

• Avoid seeing anyone else’s work or allowing yours to be seen.

• Do not communicate with anyone but an exam proctor.

• Good luck!

1

Prelude: Common Data Types

In multiple parts of this exam, we will use the following data types Nullable and
List which are variants of Maybe and [] from the standard library (Prelude)

data Nullable a = Null | Val a
deriving (Eq, Ord, Show)

data List a = Emp | Cons a (List a)
deriving (Eq, Ord, Show)

Also recall the funny arrays from the first midterm which are functions from Int
(indices) to the value at that index

data Arr v = MkArr (Int -> v)

and the various operations we (ok, you) defined on them

init :: v -> Arr v
init v = MkArr (_ -> v)

get :: Int -> Arr v -> v
get idx (MkArr f) = f idx

set :: Int -> v -> Arr v -> Arr v
set idx val (MkArr f) = MkArr (\i -> if i == idx then val else f i)

arr :: Arr Int
arr = set 3 1000 (set 2 100 (set 1 10 (init 0)))

2

Part 1: Functors

Q1: fmap for Nullable [10 pts]

Fill in the blanks to complete the definition of fmap for Nullable

instance Functor Nullable where
fmap :: (a -> b) -> Nullable a -> Nullable b

fmap _ Null = __________________________________

fmap f (Val x) = __________________________________

such that when you are done, you get the following behavior

-- >>> fmap (+10) Null
-- Null

-- >>> fmap (+10) (Val 10)
-- Val 20

Q2: fmap for List [10 pts]

Fill in the blanks to complete the definition of fmap for List

instance Functor List where
fmap :: (a -> b) -> List a -> List b
fmap _ Emp = Emp
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

such that when you are done, you get the following behavior

-- >>> fmap (+1) Emp
-- Emp

-- >>> fmap (+1) (Cons 0 (Cons 10 (Cons 100 (Cons 1000 Emp))))
-- Cons 1 (Cons 11 (Cons 101 (Cons 1001 Emp)))

Q3: fmap for Arr [15 pts]

Fill in the blanks to complete the definition of fmap for Arr

instance Functor Arr where
fmap :: (a -> b) -> Arr a -> Arr b

fmap f (MkArr a) = __________________________________

3

such that when you are done, you get the following behavior

-- >>> (get 0 arr, get 1 arr, get 2 arr, get 3 arr)
-- (0,10,100,1000)

-- >>> let arr' = fmap (+1) arr
-- >>> (get 0 arr', get 1 arr', get 2 arr', get 3 arr')
-- (1,11,101,1001)

Part 2: Applicatives

The fmap operation works nicely for a single argument – i.e. applying a function over
a single “container” – but not so nicely for functions taking multiple inputs.

For example, consider the following functions

plus2 :: Int -> Int -> Int
plus2 x1 x2 = x1 + x2

plus3 :: Int -> Int -> Int -> Int
plus3 x1 x2 x3 = x1 + x2 + x3

plus4 :: Int -> Int -> Int -> Int -> Int
plus4 x1 x2 x3 x4 = x1 + x2 + x3 + x4

Wouldn’t it be cool if we could do something like

-- >>> fmap2 plus2 [1,2,3] [10,20,30]
-- [11,22,33]

-- >>> fmap3 plus3 [1,2,3] [10,20,30] [100,200,300]
-- [111,222,333]

-- >>> fmap4 plus4 [1,2] [10,20] [100,200] [1000,2000]
-- [1111,2222]

wouldn’t it be even cooler if we could replace fmap2, fmap3, fmap4 etc. with just a
single with a single special function? Consider the Applicative typeclass which defines
an (infix) operator <*> that does just that:

class App f where
(<*>) :: f (a -> b) -> f a -> f b

At the end of this problem, we will be able to write the above as

-- >>> fmap plus2 [1,2,3] <*> [10,20,30]
-- [11,22,33]

4

-- >>> fmap plus3 [1,2,3] <*> [10,20,30] <*> [100,200,300]
-- [111,222,333]

-- >>> fmap plus4 [1,2] <*> [10,20] <*> [100,200] <*> [1000,2000]
-- [1111,2222]

HINT: The <*> operator is left-associative i.e. you should read

e1 <*> e2 <*> e3 <*> ... <*> en

as

((((e1 <*> e2) <*> e3) <*> ...) <*> en)

Q4. App instance for Nullable [10pts]

First, fill in the blanks to complete the App instance for Nullable

instance App Nullable where

(<*>) :: Nullable (a -> b) -> Nullable a -> Nullable b

Null <*> _ = __________________________________

_ <*> Null = __________________________________

Val f <*> Val v = __________________________________

so that when you are done we get the following behavior

-- >>> fmap plus2 (Val 10) <*> (Val 100)
-- Val 110
-- >>> fmap plus2 Null <*> (Val 100)
-- Null
-- >>> fmap plus2 (Val 10) <*> Null
-- Null

-- >>> plus3 `fmap` (Val 10) <*> (Val 100) <*> (Val 1000)
-- Val 1110
-- >>> plus3 `fmap` Null <*> (Val 100) <*> (Val 1000)
-- Null
-- >>> plus3 `fmap` (Val 10) <*> Null <*> (Val 1000)
-- Null
-- >>> plus3 `fmap` (Val 10) <*> (Val 100) <*> Null
-- Null

5

-- >>> plus4 `fmap` (Val 10) <*> (Val 100) <*> (Val 1000) <*> (Val 10000)
-- Val 11110

Q5. App instance for [] [10pts]

First, fill in the blanks to complete the App instance for []

instance App [] where

(<*>) :: [a -> b] -> [a] -> [b]

[] <*> _ = __________________________________

_ <*> [] = __________________________________

(f:fs) <*> (x:xs) = __________________________________

So that when you are done, we get the following behavior

-- >>> plus2 `fmap` [1,2,3] <*> [10,20,30]
-- [11,22,33]
-- >>> plus3 `fmap` [1,2,3] <*> [10,20,30] <*> [100,200,300]
-- [111,222,333]
-- >>> plus4 `fmap` [1,2] <*> [10,20] <*> [100,200] <*> [1000,2000]
-- [1111,2222]

Q6. App instance for Arr [15pts]

Finally, fill in the blanks to complete the App instance for Arr

instance App Arr where

(<*>) :: Arr (a -> b) -> Arr a -> Arr b

MkArr f <*> MkArr v = __________________________________

so that when you are done, we get the following behavior

-- >>> (get 0 arr, get 1 arr, get 2 arr, get 3 arr)
-- (0,10,100,1000)
-- >>> let arr'' = fmap plus3 arr <*> arr <*> arr
-- >>> (get 0 arr'', get 1 arr'', get 2 arr'', get 3 arr'')
-- (0,30,300,3000)

6

Part 3: The “programmable semicolon”

Haskell is often called a language with a “programmable semicolon”. Recall that

do {x1 <- e1; x2 <- e2; ... ; xn <- en; e}

is the same as

e1 >>= (\x1 -> (e2 >>= \x2 -> ... en >>= (\xn -> e)))

So depending on the implementation of >>= (and return) code that uses do-blocks
can have quite different behavior.

Consider the following foo function

foo :: (Monad m) => m a -> m b -> m (a, b)
foo ma mb = do

a <- ma
b <- mb
return (a, b)

which may alternatively be written as

foo ma mb = do {a <- ma; b <- mb; return (a, b)}

or as

foo ma mb = ma >>= (\a -> mb >>= (\b -> return (a, b)))

Q7: foo with Maybe [10pts]

Fill in the blanks below to write down what the preceding expression will evaluate to:

>>> foo Nothing Nothing

>>> foo (Just 10) Nothing

>>> foo Nothing (Just "a")

>>> foo (Just 10) (Just "a")

7

Q8: foo with [] [15pts]

HINT: see Monad instance for [] in cheat sheet

Fill in the blanks below to write down what the preceding expression will evaluate to:

>>> foo [1,2] ["a", "b"]

Q9: foo with State [15pts]

Recall the ST for State-transformers with Int state defined in class as

type ST a = S.State Int a

and consider the following definitions

burp :: ST String
burp = do

n <- S.get
S.put (n * 10)
return (show n)

q9 :: ST (String, String)
q9 = foo burp burp

Fill in the blanks below to write down what the preceding expression will evaluate to

-- S.evalState :: ST a -> Int -> a

>>> S.evalState (foo burp burp) 0

>>> S.evalState (foo burp burp) 1

__

8

Monad Instance “Cheatsheet”

-- Maybe
data Maybe a = Nothing | Just a

-- Monad instance for Maybe
instance Monad Maybe where

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= _ = Nothing
Just x >>= f = f x

-- Monad instance for []
instance Monad [] where

return :: a -> [a]
return x = [x]

(>>=) :: [a] -> (a -> [b]) -> [b]
[] >>= f = []
(x:xs) >>= f = f x ++ (xs >>= f)

-- State
data State s a = MkST (s -> (s, a))

-- Monad instance for State
instance Monad (State s) where

return :: a -> State s a
return s = MkST (\s -> (s, a))

(>>=) :: State s a -> (a -> State s b) -> State s b
(MkST f) >>= g = MkST (\s -> let (s', a) = f s in

let (MkST f') = g a in
f' s')

9

	Prelude: Common Data Types
	Part 1: Functors
	Q1: fmap for Nullable [10 pts]
	Q2: fmap for List [10 pts]
	Q3: fmap for Arr [15 pts]

	Part 2: Applicatives
	Q4. App instance for Nullable [10pts]
	Q5. App instance for [] [10pts]
	Q6. App instance for Arr [15pts]

	Part 3: The “programmable semicolon”
	Q7: foo with Maybe [10pts]
	Q8: foo with [] [15pts]
	Q9: foo with State [15pts]

	Monad Instance “Cheatsheet”

