CSE 230 Second Midterm, Fall 2023

Ranjit Jhala

December 7th, 2023

NAME

SID

You have 75 minutes to complete this exam.
Where limits are given, write no more than the amount specified.
Avoid seeing anyone else’s work or allowing yours to be seen.

Do not communicate with anyone but an exam proctor.

Good luck!

Prelude: Common Data Types
In multiple parts of this exam, we will use the following data types Nullable and
List which are variants of Maybe and [] from the standard library (Prelude)
data Nullable a = Null | Val a
deriving (Eg, Ord, Show)
data List a = Emp | Cons a (List a)
deriving (Eqg, Ord, Show)

Also recall the funny arrays from the first midterm which are functions from Int
(indices) to the value at that index

data Arr v = MkArr (Int —> v)

and the various operations we (ok, you) defined on them

init :: v => Arr v

init v = MkArr (_ —-> V)

get :: Int -> Arr v -> v

get idx (MkArr f) = f idx

set :: Int —> v —> Arr v —> Arr v

set idx val (MkArr f) = MkArr (\1i —-> if i == idx then val else f 1)
arr :: Arr Int

arr = set 3 1000 (set 2 100 (set 1 10 (init 0)))

Part 1: Functors

Q1: fmap for Nullable [10 pts]
Fill in the blanks to complete the definition of fmap for Nullable

instance Functor Nullable where
fmap :: (a —> b) —> Nullable a -> Nullable b

fmap _ Null

fmap £ (Val x) =

such that when you are done, you get the following behavior
—— >>> fmap (+10) Null
—— Null

—= >>> fmap (+10) (Val 10)
-— Val 20

Q2: fmap for List [10 pts]
Fill in the blanks to complete the definition of fmap for List

instance Functor List where

fmap :: (a —> b) —-> List a —-> List b
fmap _ Emp = Emp
fmap £ (Cons x xs) = Cons (f x) (fmap f xs)

such that when you are done, you get the following behavior

—— >>> fmap (+1) Emp
—-— Emp

-= >>> fmap (+1) (Cons 0 (Cons 10 (Cons 100 (Cons 1000 Emp))))
—-— Cons 1 (Cons 11 (Cons 101 (Cons 1001 Emp)))

Q3: fmap for Arr [15 pts]
Fill in the blanks to complete the definition of fmap for Arr

instance Functor Arr where
fmap :: (a —> b) —> Arr a -> Arr b

fmap £ (MkArr a) =

such that when you are done, you get the following behavior
-— >>> (get 0 arr, get 1 arr, get 2 arr, get 3 arr)

-- (0,10,100,1000)

—— >>> let arr' = fmap (+1) arr
-— >>> (get 0 arr', get 1 arr', get 2 arr', get 3 arr')
-- (1,11,101,1001)

Part 2: Applicatives

The fmap operation works nicely for a single argument —i.e. applying a function over
a single “container” — but not so nicely for functions taking multiple inputs.

For example, consider the following functions

plus2 :: Int -> Int -> Int

plus2 x1 x2 = x1 + x2

plus3 :: Int -> Int -> Int -> Int
plus3 x1 x2 x3 = x1 + x2 + %3

plus4 :: Int -> Int -> Int -> Int -> Int
plusd4d x1 x2 x3 x4 = x1 + x2 + x3 + x4
Wouldn't it be cool if we could do something like

-= >>> fmapZ2 plus2 [1,2,3] [10,20,30]

-—- [11,22,33]

-— >>> fmap3 plus3 [1,2,3] [10,20,30] [100,200,300]
-—- [111,222,333]

—— >>> fmap4 plus4 [1,2] [10,20] [100,200] [1000,2000]
—— [1111,2222]

wouldn’t it be even cooler if we could replace fmap2, fmap3, fmap4 etc. with just a
single with a single special function? Consider the Applicative typeclass which defines
an (infix) operator <> that does just that:

class App f where
(<%>) :: £ (a —> b) > f a > f b

At the end of this problem, we will be able to write the above as

-— >>> fmap plus2 [1,2,3] <x> [10,20,30]
-— [11,22,33]

—— >>> fmap plus3 [1,2,3] <#> [10,20,30] <*> [100,200,300]
—— [111,222,333]

—— >>> fmap plusd4 [1,2] <*> [10,20] <*> [100,200] <> [1000,2000]
-—— [1111,2222]

HINT: The <> operator is left-associative i.e. you should read

el <> e2 <*> e3 <x> ... <x> en

as

((((el <x> e2) <x> e3) <x> ...) <x> en)

Q4. App instance for Nullable [10pts]
First, fill in the blanks to complete the App instance for Nullable

instance App Nullable where
(<x>) :: Nullable (a —> b) —-> Nullable a -> Nullable b

Null <%> _ =

<x> Null

Val f <x> Val v

so that when you are done we get the following behavior

—— >>> fmap plus2 (Val 10) <x> (Val 100)

-— Val 110

—-— >>> fmap plusZ Null <x> (Val 100)
—— Null

—-— >>> fmap plusZ (Val 10) <#> Null

—-— Null

—— >>> plus3 “fmap®~ (Val 10) <#> (Val 100) <x> (Val 1000)
-— Val 1110

—— >>> plus3 “fmap® Null <*> (Val 100) <#> (Val 1000)

—— Null

—— >>> plus3 “fmap® (Val 10) <x> Null <x> (Val 1000)

-—— Null

—— >>> plus3 "fmap (Val 10) <x> (Val 100) <%> Null

-— Null

——= >>> plus4 “fmap (Val 10) <x> (Val 100) <%x> (Val 1000) <x> (Val 10000)
-—— Val 11110

Q5. App instance for [] [10pts]
First, fill in the blanks to complete the App instance for []

instance App [] where
(<*>) :: [a —> bl —> [a] —> [b]

[] <x> =

_ <x> [] =

(f:fs) <x> (x:xs) =

So that when you are done, we get the following behavior

-— >>> plus2 “fmap" [1,2,3] <%x> [10,20,30]

-— [11,22,33]

—-— >>> plus3 “fmap® [1,2,3] <*> [10,20,30] <*> [100,200,300]

-— [111,222,333]

—-— >>> plus4 “fmap" [1,2] <#+> [10,20] <%> [100,200] <> [1000,2000]
-—— [1111,2222]

Q6. App instance for Arr [15pts]
Finally, fill in the blanks to complete the App instance for Arr

instance App Arr where
(<¥>) :: Arr (a -> b) -> Arr a —> Arr Db

MkArr f <%x> MkArr v =

so that when you are done, we get the following behavior

-— >>> (get 0 arr, get 1 arr, get 2 arr, get 3 arr)

-- (0,10,100,1000)

—— >>> Jet arr'' = fmap plus3 arr <x> arr <#> arr

-— >>> (get 0 arr'', get 1 arr'', get 2 arr'', get 3 arr'')
-- (0,30,300,3000)

Part 3: The “programmable semicolon”

Haskell is often called a language with a “programmable semicolon”. Recall that
do {x1 <- el; x2 <- e2; ... ; Xn <- en; e}

is the same as

el >>= (\xl -> (e2 >>= \x2 —> ... en >>= (\xn —> e)))

So depending on the implementation of >>= (and return) code that uses do-blocks
can have quite different behavior.

Consider the following foo function

foo :: (Monad m) => ma -—> m b -—> m (a, b)
foo ma mb = do

a <- ma

b <- mb

return (a, b)

which may alternatively be written as

foo ma mb = do {a <- ma; b <- mb; return (a, b)}
or as
foo ma mb = ma >>= (\a -> mb >>= (\b —-> return (a, b)))

Q7: foo with Maybe [10pts]
Fill in the blanks below to write down what the preceding expression will evaluate to:

>>> foo Nothing Nothing

>>> foo (Just 10) Nothing

>>> foo Nothing (Just "a")

>>> foo (Just 10) (Just "a")

Q8: foo with [] [15pts]
HINT: see Monad instance for [] in cheat sheet
Fill in the blanks below to write down what the preceding expression will evaluate to:

>>> foo [1,2] [nau, "b"]

Q9: foo with State [15pts]

Recall the ST for State-transformers with Int state defined in class as
type ST a = S.State Int a

and consider the following definitions

burp :: ST String
burp = do
n <- S.get
S.put (n = 10)
return (show n)

g9 :: ST (String, String)
g9 = foo burp burp
Fill in the blanks below to write down what the preceding expression will evaluate to

-— S.evalState :: ST a —> Int —-> a

>>> S.evalState (foo burp burp) 0O

>>> S.evalState (foo burp burp) 1

Monad Instance “Cheatsheet”

—— Maybe
data Maybe a = Nothing | Just a

—— Monad instance for Maybe
instance Monad Maybe where

return :: a —> Maybe a

return x = Just x

(>>=) :: Maybe a -> (a —-> Maybe b) —-> Maybe Db
Nothing >>= _ = Nothing

Just x >>= f = f x

—— Monad instance for []

instance Monad [] where
return :: a —> [a]
return x = [x]
(>>=) :: [a] —> (a —> [b]) —> [b]
[] >>= £ = []
(x:xs) >>= f = £ x ++ (xs >>= f)

—— State
data State s a = MkST (s -> (s, a))

—— Monad instance for State
instance Monad (State s) where

return :: a —> State s a
return s = MkST (\s —-> (s, a))
(>>=) :: State s a -> (a —-> State s b) —-> State s b
(MkST f) >>= g = MkST (\s —-> let (s', a) = f s in
let (MkST f') = g a in
|l

f' s'")

	Prelude: Common Data Types
	Part 1: Functors
	Q1: fmap for Nullable [10 pts]
	Q2: fmap for List [10 pts]
	Q3: fmap for Arr [15 pts]

	Part 2: Applicatives
	Q4. App instance for Nullable [10pts]
	Q5. App instance for [] [10pts]
	Q6. App instance for Arr [15pts]

	Part 3: The “programmable semicolon”
	Q7: foo with Maybe [10pts]
	Q8: foo with [] [15pts]
	Q9: foo with State [15pts]

	Monad Instance “Cheatsheet”

