A Type to Represent Expressions
data Expr
= Number Int -- ^ 0,1,2,3,4
| Plus Expr Expr -- ^ e1 + e2
| Minus Expr Expr -- ^ e1 - e2
| Mult Expr Expr -- ^ e1 * e2
| Div Expr Expr -- ^ e1 / e2
deriving (Show)
Some Example Expressions
= Plus (Number 2) (Number 3) -- 2 + 3
e1 = Minus (Number 10) (Number 4) -- 10 - 4
e2 = Mult e1 e2 -- (2 + 3) * (10 - 4)
e3 = Div e3 (Number 3) -- ((2 + 3) * (10 - 4)) / 3 e4
EXERCISE: An Evaluator for Expressions
Fill in an implementation of eval
eval :: Expr -> Int
= ??? eval e
so that when you’re done we get
-- >>> eval e1
-- 5
-- >>> eval e2
-- 6
-- >>> eval e3
-- 30
-- >>> eval e4
-- 10
QUIZ
What does the following evaluate to?
= eval (Div (Number 60) (Minus (Number 5) (Number 5))) quiz
A. 0
B. 1
C. Type error
D. Runtime exception
E. NaN
To avoid crash, return a Result
Lets make a data type that represents Ok
or Error
data Result v
= Ok v -- ^ a "successful" result with value `v`
| Error String -- ^ something went "wrong" with `message`
deriving (Eq, Show)
EXERCISE
Can you implement a Functor
instance for Result
?
instance Functor Result where
fmap f (Error msg) = ???
fmap f (Ok val) = ???
When you’re done you should see
-- >>> fmap (\n -> n ^ 2) (Ok 9)
-- Ok 81
-- >>> fmap (\n -> n ^ 2) (Error "oh no")
-- Error "oh no"
Evaluating without Crashing
Instead of crashing we can make our eval
return a Result Int
eval :: Expr -> Result Int
- If a sub-expression has a divide by zero return
Error "..."
- If all sub-expressions are safe then return
Ok n
EXERCISE: Implement eval
with Result
eval :: Expr -> Result Int
Number n) = ?
eval (Plus e1 e2) = ?
eval (Minus e1 e2) = ?
eval (Mult e1 e2) = ?
eval (Div e1 e2) = ? eval (
The Good News
No nasty exceptions!
>>> eval (Div (Number 6) (Number 2))
Ok 3
>>> eval (Div (Number 6) (Number 0))
Error "yikes dbz:Number 0"
>>> eval (Div (Number 6) (Plus (Number 2) (Number (-2))))
Error "yikes dbz:Plus (Number 2) (Number (-2))"
The BAD News!
The code is super gross
Lets spot a Pattern
The code is gross because we have these cascading blocks
case e1 of
Error err1 -> Error err1
Ok v1 -> case e2 of
Error err2 -> Error err2
Ok v1 -> Ok (v1 + v2)
but look closer … both blocks have a common pattern
case e of
Error err -> Error err
Value v -> {- do stuff with v -}
- Evaluate
e
- If the result is an
Error
then return that error. - If the result is a
Value v
then further process withv
.
Lets Bottle that Pattern in Two Functions
>>=
(pronounced bind)return
(pronounced return)
(>>=) :: Result a -> (a -> Result b) -> Result b
Error err) >>= _ = Error err
(Value v) >>= process = process v
(
return :: a -> Result a
return v = Ok v
NOTE: return
is not a keyword
- it is the name of a function!
A Cleaned up Evaluator
The magic bottle lets us clean up our eval
eval :: Expr -> Result Int
Number n) = Ok n
eval (Plus e1 e2) = eval e1 >>= \v1 ->
eval (>>= \v2 ->
eval e2 Ok (v1 + v2)
Div e1 e2) = eval e1 >>= \v1 ->
eval (>>= \v2 ->
eval e2 if v2 == 0
then Error ("yikes dbz:" ++ show e2)
else Ok (v1 `div` v2)
The gross pattern matching is all hidden inside >>=
Notice the >>=
takes two inputs of type:
Result Int
(e.g.eval e1
oreval e2
)Int -> Result Int
(e.g. the processor takes thev
and does stuff with it)
In the above, the processing functions are written using \v1 -> ...
and \v2 -> ...
NOTE: It is crucial that you understand what the code above
is doing, and why it is actually just a “shorter” version of the
(gross) nested-case-of eval
.
A Class for >>=
The >>=
operator is useful across many types!
- like
fmap
orshow
ortoJSON
or==
, or<=
Lets capture it in a typeclass:
class Monad m where
-- (>>=) :: Result a -> (a -> Result b) -> Result b
(>>=) :: m a -> (a -> m b) -> m b
-- return :: a -> Result a
return :: a -> m a
Result
is an instance of Monad
Notice how the definitions for Result
fit the above, with m = Result
instance Monad Result where
(>>=) :: Result a -> (a -> Result b) -> Result b
Error err) >>= _ = Error err
(Value v) >>= process = process v
(
return :: a -> Result a
return v = Ok v
Syntax for >>=
In fact >>=
is so useful there is special syntax for it.
Instead of writing
>>= \v1 ->
e1 >>= \v2 ->
e2 >>= \v3 ->
e3 e
you can write
do v1 <- e1
<- e2
v2 <- e3
v3 e
or if you like curly-braces
do { v1 <- e1; v2 <- e2; v3 <- e3; e }
Simplified Evaluator
Thus, we can further simplify our eval
to:
eval :: Expr -> Result Int
Number n) = return n
eval (Plus e1 e2) = do v1 <- eval e1
eval (<- eval e2
v2 return (v1 + v2)
Div e1 e2) = do v1 <- eval e1
eval (<- eval e2
v2 if v2 == 0
then Error ("yikes dbz:" ++ show e2)
else return (v1 `div` v2)
Which now produces the result
>>> evalR exQuiz
Error "yikes dbz:Minus (Number 5) (Number 5)"