Monads

A Type to Represent Expressions

data Expr
  = Number Int            -- ^ 0,1,2,3,4
  | Plus   Expr Expr      -- ^ e1 + e2
  | Minus  Expr Expr      -- ^ e1 - e2
  | Mult   Expr Expr      -- ^ e1 * e2
  | Div    Expr Expr      -- ^ e1 / e2
  deriving (Show)








Some Example Expressions

e1 = Plus  (Number 2) (Number 3)    -- 2 + 3
e2 = Minus (Number 10) (Number 4)   -- 10 - 4
e3 = Mult e1 e2                     -- (2 + 3) * (10 - 4)
e4 = Div  e3 (Number 3)             -- ((2 + 3) * (10 - 4)) / 3








EXERCISE: An Evaluator for Expressions

Fill in an implementation of eval

eval :: Expr -> Int
eval e = ???

so that when you’re done we get

-- >>> eval e1
-- 5
-- >>> eval e2
-- 6
-- >>> eval e3
-- 30
-- >>> eval e4
-- 10









QUIZ

What does the following evaluate to?

quiz = eval (Div (Number 60) (Minus (Number 5) (Number 5)))

A. 0

B. 1

C. Type error

D. Runtime exception

E. NaN











To avoid crash, return a Result

Lets make a data type that represents Ok or Error

data Result v
  = Ok   v       -- ^ a "successful" result with value `v`
  | Error String -- ^ something went "wrong" with `message`
  deriving (Eq, Show)











EXERCISE

Can you implement a Functor instance for Result?

instance Functor Result where
  fmap f (Error msg) = ???
  fmap f (Ok val)    = ???

When you’re done you should see

-- >>> fmap (\n -> n ^ 2) (Ok 9)
-- Ok 81

-- >>> fmap (\n -> n ^ 2) (Error "oh no")
-- Error "oh no"











Evaluating without Crashing

Instead of crashing we can make our eval return a Result Int

eval :: Expr -> Result Int
  • If a sub-expression has a divide by zero return Error "..."
  • If all sub-expressions are safe then return Ok n









EXERCISE: Implement eval with Result

eval :: Expr -> Result Int
eval (Number n)    = ?
eval (Plus  e1 e2) = ?
eval (Minus e1 e2) = ?
eval (Mult  e1 e2) = ?
eval (Div   e1 e2) = ?









The Good News

No nasty exceptions!

>>> eval (Div (Number 6) (Number 2))
Ok 3

>>> eval (Div (Number 6) (Number 0))
Error "yikes dbz:Number 0"

>>> eval (Div (Number 6) (Plus (Number 2) (Number (-2))))
Error "yikes dbz:Plus (Number 2) (Number (-2))"









The BAD News!

The code is super gross

Escher’s Staircase









Lets spot a Pattern

The code is gross because we have these cascading blocks

case e1 of
  Error err1 -> Error err1
  Ok    v1   -> case e2 of
                  Error err2 -> Error err2
                  Ok    v1   -> Ok    (v1 + v2)

but look closer … both blocks have a common pattern

case e of
  Error err -> Error err
  Value v   -> {- do stuff with v -}
  1. Evaluate e
  2. If the result is an Error then return that error.
  3. If the result is a Value v then further process with v.








Lets Bottle that Pattern in Two Functions

Bottling a Magic Pattern
  • >>= (pronounced bind)
  • return (pronounced return)
(>>=) :: Result a -> (a -> Result b) -> Result b
(Error err) >>= _       = Error err
(Value v)   >>= process = process v

return :: a -> Result a
return v = Ok v

NOTE: return is not a keyword

  • it is the name of a function!








A Cleaned up Evaluator

The magic bottle lets us clean up our eval

eval :: Expr -> Result Int
eval (Number n)   = Ok n
eval (Plus e1 e2) = eval e1 >>= \v1 ->
                      eval e2 >>= \v2 ->
                        Ok (v1 + v2)

eval (Div e1 e2)  = eval e1 >>= \v1 ->
                      eval e2 >>= \v2 ->
                        if v2 == 0
                          then Error ("yikes dbz:" ++ show e2)
                          else Ok (v1 `div` v2)

The gross pattern matching is all hidden inside >>=

Notice the >>= takes two inputs of type:

  • Result Int (e.g. eval e1 or eval e2)
  • Int -> Result Int (e.g. the processor takes the v and does stuff with it)

In the above, the processing functions are written using \v1 -> ... and \v2 -> ...

NOTE: It is crucial that you understand what the code above is doing, and why it is actually just a “shorter” version of the (gross) nested-case-of eval.








A Class for >>=

The >>= operator is useful across many types!

  • like fmap or show or toJSON or ==, or <=

Lets capture it in a typeclass:

class Monad m where
  -- (>>=)  :: Result a -> (a -> Result b) -> Result b
     (>>=)  :: m a      -> (a -> m b)      -> m b

  -- return :: a -> Result a
     return :: a -> m a








Result is an instance of Monad

Notice how the definitions for Result fit the above, with m = Result

instance Monad Result where
  (>>=) :: Result a -> (a -> Result b) -> Result b
  (Error err) >>= _       = Error err
  (Value v)   >>= process = process v

  return :: a -> Result a
  return v = Ok v








Syntax for >>=

In fact >>= is so useful there is special syntax for it.

Instead of writing

e1 >>= \v1 ->
  e2 >>= \v2 ->
    e3 >>= \v3 ->
      e

you can write

do v1 <- e1
   v2 <- e2
   v3 <- e3
   e

or if you like curly-braces

do { v1 <- e1; v2 <- e2; v3 <- e3; e }









Simplified Evaluator

Thus, we can further simplify our eval to:

eval :: Expr -> Result Int
eval (Number n)   = return n
eval (Plus e1 e2) = do v1 <- eval e1
                       v2 <- eval e2
                       return (v1 + v2)
eval (Div e1 e2)  = do v1 <- eval e1
                       v2 <- eval e2
                       if v2 == 0
                         then Error ("yikes dbz:" ++ show e2)
                         else return (v1 `div` v2)

Which now produces the result

>>> evalR exQuiz
Error "yikes dbz:Minus (Number 5) (Number 5)"